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Angular Momentum Operator and Fermion-Pair
Creation for Non-Abelian Fields
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We study the extended structure of non-Abelian dyons, the generalized electromagnetic
field and the resulting residual angular momentum in the interior as well as exterior
regions of the dyon, and it has been demonstrated that at the dyonic centre there exists
no well-definedJ (1) charge symmetry and the density of residual angular momentum
becomes infinity. The mechanism of creation of a fermionic pair at the dyonic core
involving the extremely high density of residual angular momentum has been devel-
oped, which leads to baryon-number nonconservation in the presence of non-Abelian
dyons. The fermion-number—breaking amplitudes in the presence of a non-Abelian dyon
have been analyzed and are not suppressed by-eep§t£?). Further, the relevant
properties of left-handed fermions in a non-Abelian field has been summarized and
the zeroth-order approximation is described. Within this approximation the density
of the fermion-number—breaking condensate is found tO{#), i.e. to be independent

of the coupling constant and of the vacuum expectation value of the Higgs field.

KEY WORDS: dyon; residual angular momentum; dyonic core; fermion-pair creation;
zeroth-order approximation.

1. INTRODUCTION

Though physicists were fascinated by the magnetic monopole since the in-
genious idea was put forward by Dirac (1931, 1948) and Ritied. (1975, 1978)
about its possible experimental verification, renewed interest in this subject was
enhanced by the very strong argument of 't Hooft (1974) and Polyakov (1974) that
the spontaneously broken gauge theories with comigétj gauge group guar-
antee the existence of smooth, topologically stable finite-energy solutions with
quantized magnetic charge. Extending this, Julia and Zee (1975) constructed clas-
sical solutions having electric and magnetic charges on the same particle, called a
dyon (Schwinger, 1966a,b).

1High Energy Physics, Department of Physics, Kumaun University, Nainital, India.
2To whom correspondence should be addressed at High Energy Physics, Department of Physics,
Kumaun University, Nainital 263002, India.

459

0020-7748/02/0300-0459/0 2002 Plenum Publishing Corporation



460 Joshi and Rajput

As such, the monopoles and dyons become an intrinsic part of all current
grand-unified theories (Dokos and Tomaras, 1980; Preskill, 1984), with enormous
potential importance in connection with their role in catalyzing baryon-number—
nonconserving processes (Callen, 1982a,b; Rubakov, 1981a), the quark confine-
ment problem of QCD (Mandelstam, 1976, 1979; 't Hooft, 1978) and RCD (Rajput
et al, 1989), the unification of gravitation with generalized electromagnetic field
(Rajput, 1982, 1984; Rajput and Gunwant, 1988) and CP violation in terms of
nonzero vacuum angle of world (Witten, 1979). Keeping in view the result of Witten
that there are necessarily dyons, Rajpual. (1982, 1986a,b) have constructed
a self-consistent and covariant quantum field theory of dyons and demonstrated
(Rajputet al.,, 1989) the validity of two simultaneous recent experimental results
about the existence of free fractionally charged quarks (Fairbaak 1981) and
monopoles (Cabrera, 1982) with magnetic charge of one Dirac unit. The dyon—
fermion dynamics has been worked out by various authors (Mandelstam, 1976,
1979; Rajputet al, 1989; Rubakov, 1981a), and it has been demonstrated that
the helicity-conserving and charge-mixing boundary conditions to be imposed on
fermionic fields at monopole core violate the charge superselection rule. A solution
to this problem may lie in establishing the formation of chiral condensate, allowing
the flipping of helicity and proving an understanding of the role of dyon as catalyst
in baryon-number—nonconserving processes. This problem of chiral condensation
at the dyonic core requires the explicit field solutions in the interior region of the
dyon. Investigating the extended structure of non-Abelian dyons in the present
paper, we have constructed suitable Lagrangian density and energy—momentum
tensor in non-Abelian gauge theory of dyons, derived the expression of generalized
electromagnetic field in the external and internal regions of extended dyon, and
showed that there is no well-definel1) charge symmetry at the dyonic centre.
The contribution of these fields to the angular-momentum operator of non-Abelian
dyon has been derived and the density of the resulting residual angular momentum
has shown to be infinity at dyonic centre.

Not long since, the existence of 't Hooft—Polyakov magnetic monopole
(Polyakov, 1974; 't Hooft, 1974) has been one of the most interesting features
of spontaneous broken gauge theories. Most of the known characteristics of the
't Hooft—Polyakov magnetic monopole (mass, magnetic charge, etc.) manifest
themselves already at the classical level, the quantum effects giving I&@tp
corrections (Jackiw, 1977). The only known exception is the deep relationship
(Christ and Jackiw, 1980; Pak, 1980; Witten, 1979) between the magnetic charge
and the winding number (Belavat al,, 1975) of the gauge field. In theories with-
out massless fermions this results in the Witten value of the charge of the quantum
dyon (Witten, 1979)Qp = —ef /2, whered is the CP nonconservation angle. In
the present study we consider theories with massless left-handed fermieA$ ((
theories). Our main purpose is to show that in these theories the above relationship
leads to strong fermion-number—nonconservation in dyon—fermion interaction.
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We also develop a suitable approximation for calculating some fermion-number—
breaking matrix elements in the presence of a dyon.

It is well known that in §/-A) theories the divergence of the (euclidean)
fermionic current is anomalous (Adlet al., 1969; Bell and Jackiw, 1969),

3,95 = constpF,, F,, = consE?H?,

so that the fermion number

N = / JE d3x
is not conserved in the external field with a nonzero winding nurgbetere
1 4
q = —ﬂ&‘#\»\p SD F/Lv F)\.,O d X. (1)

In the vacuum sector this effect is associated with instantons (Beédva,
1975; Karasnikoet al,, 1978; Peccei and Quinn, 1977; 't Hooft, 1976a,b) and the
fermion-number—breaking amplitudes are supressed by the facter expgte?)

as well as by negative powers of the vacuum expectation value of the Higgs field
('t Hooft, 1976a,b). The first supression results from the large values of action for
the configurations witly # 0, while the second one results from the small value
of the instanton size, which is cut off at the Compton length of the massive vector
boson.

Since in the presence of non-Abelian dyons there exist a nonzero classical,
electromagnetic fieldd® £ 0 andE® # 0 could give rise to the strong chirality
breaking in quantum chromodynamics (Blagml, 1991). The emission of light
charged fermions from a Julia—Zee dyon was analyzed by Rinat. (1991);
even for the case of massless fermions, this emission process violated chirality
and provides a simple illustration of the axial anomaly. In the fermion-number—
breaking amplitude there is no supression factor expected. One expects the anoma-
lous fermion-number—breaking in the presence of dyons to be strong, presumably
O(1). This effect can have far-reaching consequences, the most interesting one
being the strong baryon-number—nonconservation in fermion—dyon interactions
in grand unified theories (Rubakov, 1981b,c).

From the above arguments it is clear that the actual calculation of Green
functions with fermion-number breaking in the presence of a dyon will be rather
nonstandard. The effect is neither perturbative (hgA vertex conserves the
fermion number) nor quasiclassical (since the factor exp(cefsibes not ap-
pear). This difficulty is inherent in the Schwinger model (Schwinger, 1962), where
an exact solution (either operator (Krasnilehal, 1980a,b; Velo, 1967) or func-
tional (Schwinger, 1962)) is needed to investigate the chirality and fermion-number
breaking (Krasnikowt al, 1980a,b; Lowenstein and Swieca, 1971; Nielsen and
Schroer, 1977a,b; Rothe and Swieca, 1977, 1979; Schroer, 1978). Since we are
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unable to obtain an exact solution of the spontaneous, broken four-dimensional
gauge theory, we are faced with the problem of developing a suitable zeroth-
order approximation. However, the natural approximation does exist if we restrict
ourselves to the dynamics of spherically symmetric fermions. Within this ap-
proximation one assumes the relevent gauge field configurations to be spherically
symmetric and neglects the contribution of fermions with nonzero angular momen-
tum to the fermionic determinant. Under these assumptions the problem becomes
effectively two-dimensional and one can find an exact solution that is quite sim-
ilar to the solution of the Schwinger model. The main part of the present paper
is devoted to the description and solution of this approximation and to estimate
corrections. Within this approximation it becomes possible to confirm the heuristic
argument of Section. 3 and find tké dependence of fermion-number—breaking
matrix elements in the presence of a dyon.

2. GENERALIZED FIELD AND ANGULAR MOMENTUM
ASSOCIATED WITH EXTENDED DYONS

Generalized fields associated with dyons of nonzero mass can be described
only by a non-Abelian gauge theory consisting of usual four-space (external) and
the n-dimensional internal group space. In such a theory, the fieldnHasd
internal multiplicity and the multiplets of gauge field transform as a basis of adjoint
representation afi-dimensional non-Abelian gauge symmetry group. In order to
preserve the invariance of generalized field equations of motion for dyons under
the local non-Abelian gauge transformations

y— v =Sy, 1)

with Sa local group element &U(2), a generalized potentiﬁdﬂ is introduced,
and derivatives of/ are identified as covariant derivatives

V= (0, —iq*V,x), (2.2)
where the vector sigr> and cross product are denoted in internal group space,
n=0,1,2,3, and are indices representing external degrees of freedom and the
componen¥/? of V,, in the internal space is a generalized four-potential given by

a_ pa_ ipa
V2= A% —iB2, (2.3)

with A% andB? as electric and magnetic four-potentials associated with the dyons

"
carrying the generalized charge

qg=e—ig (2.4)

in terms of electric and magnetic chargesnd g respectively. It has already
been shown (Rajputt al, 1983) that for the fields associated with a massless
dyon, the additional potentiaB{,) does not lead to an increase in the number of
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independent variables describing the fields, and the introduction of this potential
is actually compensated by an enlargement of the group of gauge transformations.
In non-Abelian gauge theory of massive dyok?g, may be treated as ax22
Hermitian matrix and the generalized field tensor may be written as

Guv = Voo — Voo +19°[V,,, Vi . (2.5)

For extended dyons, it is possible (Wu and Yang, 1975) to divide the space—time
manifold into two overlapping regions;Rind R such andB,, vanishes in Rand
A, vanishes in R

In the internal two-dimensional complex space introduced at each point
of Minkowski space—time, the charged field describedsth¥?) is replaced by
expli AC(X)]v¥ in SU2) x U(1), whereA©(x) is a phase factor. Then the basic
spinors of this internal space are acted upon by the following eleSiehSU(3):

S(x) = S(x) expl—i A°(x)] (2.6)

where §(x) is a local group element $U2) defined by Eq. (2.1). Under this
gauge transformation thex2 2 matrix potentiaV,, and the matrix field tens@s,,,,
transform in the following manner:

- - -1

vV, =5'V,5-58",8

and

-

G, =568 @2.7)

respectively. Instead of matricg/; and éﬂu, we may define the gauge potential
V2 and the gauge field streng®f,, as follows:

V, - ViT,,
and
G, = G2, Ta, (2.8)

JLv

where the repeated indices f81(2) group are summed over 1, 2, and 3 (internal
degrees of freedom) and the matrides describing the infinitesimal generators
of the groupSU(2), satisfy the commutation relation

(Ta, To) = 162°°T°, (2.9)

with £2°¢ as the structure constants of the internal group.
Then Eq. (2.5) may be written as

Ga, = V2 + 8, V2 + 0" V,pVy, (2.10)

which gives the relationship between the gauge pote¥iffaind the non-Abelian
gauge field tenso&?,. The covariant derivative of this field tensor may then be
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written as
VUG?N = 3”Giv N iq*eabcngwc = \]:‘, (2.11)
where
I3 — 32 +i9"*"Vy Gue (2.11a)
with
Jj—avefw — j;’j‘—ikg, (2.12)

representing the generalized linear (Abelian) electric and magnetic four-currents
j andk? associated with the dyon. The non-Abelian field in Eq. (2.11) is Lorentz-
covariant and reduces to the field equations derived earlier (Bhakuni and Rajput,
1982) in the Abelian limit when the structure constafft vanishes. The Nothe-

rian currentj? given by Eq. (2.12) is manifestly conserved while the generalized
non-Abelian current given by Eq. (2.11a) is not so but it satisfies the following
generalized conservation law (i.e. gauge covariance):

vik.J, =0, (2.13)

where the ordinary derivative is replaced by covariant derivative.
In non-Abelian gauge theory the local gauge transformations of generalized
potential may be generalized into the following form:

V=V, + YV, Rq(X), (2.14)

Vi, = Vi + 3,400 +10" TV, x Aq(x)]

where the gauge terﬁnq(x) is given by the following equations in terms of electric
and magnetic gauge constituents:

Aq(x) = Ae(X) — i Ag(x). (2.15)
These results led to the following gauge changes in the generalized fields and
currents for the invariance of field equations in non-Abelian gauge theory

G =i9*[Gy x Aq(X)],
and

J, =ig*[J, x Aq(X)], (2.16)

which also shows that the generalized particle current, though not conserved in
non-Abelian theory, is gauge-covariant and subsequently the field equations (2.11)
are invariant to a nontrivial local gauge group. Substituting these gauge changes
into Eq. (2.11a), one may readily realize that the Notherian cuijjergceives a
contribution from gauge fields and hence it is not gauge-covariant.
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Suitable Lagrangian density yielding field Eq. (2.11) can be written in the
following form:

1 = 2 1 -, = 1 - >
L=—30"9"G;, Gy + 50V - 3, = 50 9,(0) - V.(8) — V(@)

(2.17)
Vi$a = dutpa + eV 9C, (2.17a)
and
V(0) = S@%0a) — Sv2(6%04)
4 a 2 a
(2.17b)

v? = p?/n,
wherev? — (¢)? determines the vacuum expectation value of the triplet Higgs field
¢?2. This Lagrangian density leads to the following form of energy—momentum
tensor for generalized system of dyons in non-Abelian theory

v

TH — _ {guagpﬁézﬂ . évp _ g“"\7: . jp
1 P OB (¥ = 1 WAPONSE T
— 4_13“9 g Gaﬁ-G,eréavg V) Js

o500 - e TeT.0 - sve)| @e)

from which one may define the expressions for the Hamiltonian and momentum
of the systems. It may readily be shown that this Lagrangian density is invariant
under the nontrivial local gauge transformation (2.14) of the generalized potential,
provided that the local gauge changes in the generalized field and current are
given by Eq. (2.16). Lagrangian density given by Eq. (2.17) leads to the field
equation (2.11) only in the region where the current contribution due to Higgs
fields is negligible (i.e. Yang—Mills field obeys the free field equation). Let us
consider the region in which Higgs fields contribute nonnegligible source current
(i.e. the dyonic core) and assume the absence of Noetherian current defined by
Eq. (2.12) in this region such that the second term of the Lagrangian density (2.17)
(i.e. the interaction of generalized potential with generalized current) vanishes.
Then the Lagrangian density (2.17) leads to the following field equations:

V'GE, =i0"e? "V, e, (2.19)
with
I =i9"e""Vy G uc,
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and
VIV ,$2 = — 12 + M(¢2pp)° (2.20)

Equations (2.19) and (2.20) lead to the following relationship between the gener-
alized field and potential of a dyon and the Higgs field

(Vud) x ¢ — V" x G, (2.21)
Under these conditions in the dyonic core we find that Eq. (2.18) leads to
9, T =0. (2.22)

This gives the conservation of stress energy tensor inside the dyonic core. Using
this conservation law one can compute (Joshenal., 1978) the time rate of
change of four-momentum, i.e. the force exerted on the core at any instant of time.
In the static limit, when all time derivatives are zero, the field equations (2.19) and
(2.20) take the following form:

{ 01G; +i9*e2°Vy Gyjo = i9* eV, dnebe (2.23)

9IVj9iq VIOV, pe = 11PP? + (¢ hb)9®.
Considering the values of fields satisfying these equations as an initial data set, the
time evolution of the fields is determined by the field equations (2.19) and (2.20)
at the dyonic core such that the conservation equation (2.22) is valid.

It has been demonstrated in our earlier paper (Ragpwl. 1983) that an
Abelian dyon moving in the generalized field of another dyon carries a residual an-
gular momentum (field contribution) besides its orbital and spin angular momenta.
Consequently there exists a chirality-dependent multiplicity in the eigenvalues of
this angular momentum operator. Non-Abelian gauge field is self-interacting one
and carries the charge even in the absence of external current sources, as shown
by Eqg. (2.19). Because of the interaction with this charged field, the non-Abelian
dyon carries the residual angular momeftabesides its orbital, spin, and isospin
angular momenta. To compute this contribution toward the angular momentum of
the dyon, let us find the expressions on generalized electric and magnetic fields
using the following ansatz of Julia and Zee:

1
*r’

VA(r) — eaij (F) [K(r) — 1] (2.24)

q
1
gr’
wherei and o indicate space and time directiorss,is an SU2) vector index

(internal direction) and

V5i(r) — eaij (F)*3(r)

(2.25)

-
Il
|
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In the static gauge, generalized electric and magnetic fields corresponding to the
generalized field tensor given by (2.10) may be written as

= G2 = &V | 9" VipVoc, (2.26)
and
BE =&k G3 = V2 — V2 + e VjpVic (i # ] #K), (2.27)

showing that these generalized fields are non-Abelian in nature having external as
well as internal components. In the Abelian limit these fields reduce to the usual
electromagnetic fields in the simple static gauge. Using the valug$©) and

V&(r) given by Egs. (2.24) and (2.25) into (2.26) and (2.27), we get the following
expressions for the generalized electric and magnetic fields associated with the
non-Abelian dyon:

g )0 <m>+q*{w> 11J<r>}( e @29

qrorl \ r
. (P Kr)—17 rP a [K(r)—
Tl R ol )

and

OO TKO-IT (2.29)

g* r
The external fields may be obtained by taking r o, whererg is the radius of
dyonic core. For large the functionK (r) — 0 and

J(r) =b+ Mr, (2.30)

whereb andM are positive constants having the dimensions of charge and mass,
respectively. Then the external electric and magnetic fields reduce to the following
forms in the asymptotic limit:

M

Ef = q*r2( ()i — — () (2.31)
Bf = _(r()qir—z (2.32)

For vanishingM, these fields correspond to pointlike, massless Abelian dyon with
electric charge B/g*, and the magnetic charged:.

The internal fields may be obtained by takimg r g and the following values
of the functionsJ(r) andK (r) in the limitr — O:

Jr)—>0 K()— 1 (2.33)
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Then the internal fields at vanishingly small distance from the dyonic centre may
be written as follows from Egs. (2.28) and (2.29):

. (R0 A () KO
B = (OO B = T

(2.34)

Since the derivatives of the functiod§ ) andK (r) exist for small values af, these

fields are well defined near the dyonic centre. However, exactly at the dyonic centre,
these fields blow up and hence there is no well-defldét) charge symmetry at

the dyonic centre. Similar conclusions have been derived earlier (Yoneya, 1984)
by a different approach. At a finite distancet r g in the dyonic core we may
choose

Jr)—Cir?  K(r)—Cor?+1,

whereC; andC, are constants. Substituting these values in Egs. (2.28) and (2.29)
we get the following expressions for the internal fields:

ga _ 2C1(F)°(0); ZClCzr
I *
q

(F)*(F);. (2.35)

and
202

B? — C3()*(F)ir?
q*

For vanishingly smalt, these equations reduce to Eq. (2.34) with) andK (r)

given by Eq. (2.35). The angular-momentum operator of the non-Abelian dyon

may be obtained as follows by using Eq. (2.18):

—(F)?(F)j — (2.36)

J = gi,-k[d3r riTg (2.37)

The residual part of the angular momentum (i.e. field contribution) may be obtained
in the region outside (external) as well as inside (internal) of the dyonic core by
identifying the field (2.29) as external field foe r ¢ with internal position vector

and unit vector ag*andx® and as internal field far < r o with external position
vector and unit vector asandfj. Then we get

Jext =T ® (E? ® B?),
and
Jinm = (X x (Ej x By)}, (2:38)

where the symbok denotes cross product in the internal space@iglthe cross
product in the external space. Substituting the expressions (2.28) and (2.29) in
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these equations we get

rx(fexfg) [—(K(0)=1)I() Hoca - a Kr)—1

Jext = X(qi;; ? { = [3% .rE—X]r.V<r—>
—1)3 _
< fa- o)~ COZ IO g0 gy - gy KO DI
_ 0 o 7
« [(3%° - P& — %a)] Va (—K(rs 1)} LIV X Tl [v((a*))zx o]
_ —_1)2 _

x{i(K(:)z 1 —xg(r.v<7K(r)l 1))()“6"-?3)

4 5oy, (K - 1)} (2.39)
> X x (Xg x X —K(r)—1)J . .. =2(Kr)=-1
== (();E)z XB){( (r)rz ) (r)[st.r,-—rj]x.v<7(r3 )

x (Xg - fj) _ (M) [(3%e - fj)ri _ 1]}

X x (e x V (*0=1) [(K(r) - 1)3(r)
(9%)? { r2

+ r,—airj(J(r)/r)}, (2.40)

+ [Be - )r) — 1]

wheref g andfg are unit vectors in the direction of electric and magnetic fields.
Substituting the limiting values ad(r) and K(r) given by Eq. (2.33) into

Eq. (2.37), we get the following expression for the components of the internal

angular momentum operator

_ 19J(r) 9K(r)

Ja
roori X,

(2.41)

which blows up ar — 0. In other words, if the core radius is assumed to be
zero, then the density of the radial angular momentum is infinite. It corresponds
to the infinite coulomb energy of the charge on the core. Thus, when a fermion
scatters from the core of the dyon and changes its charge, the lost charge must
be deposited on the dyon core (in order to maintain overall charge conservation)
and the core must neutralize itself by some sort of pair creation process. This
pair creation effect leads to baryon-number—nonconservation in the presence of
non-Abelian dyon. The dyonic core has remarkable abilities to absorb baryon and
lepton numbers with no loss in the energy.
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3. FREMION-NUMBER BREAKING IN THE PRESENCE OF DYON

We consider aU(2) gauge theory with a Higgs triplé* and two left-handed
fermionic doubletsy©®) (s =1, 2 is the “flavor” index) throughout this paper.
We always use a euclidean formulation of the field theory, so the action func-
tional is

S= S, + Sy 3.1)
1 1
Su, = o] [ x| -5 SR + S 0,07

+ )\(SP‘;O2 - 2C2)2 j| - Mdyon}

= bosonic part (including mass of dyon) (3.1a)
Say = —i/d3x dt > w9y, + ALY
s=1,2
= fermionic part of the action. (3.1b)

Lagrangian density can be written as
1 1
L= [—@sp Fi + 5Se(Dug)® + A(Spe® — 2c2)2] — Mayon
where
1 -
Mayon = 5 / gV - 3, d3x

Since we are interested in the dyon sector, it is convenient to normalize the zero-
point energy so that the dyon energy is equal to zero,

Edyon = 0. (3.2)
According to this prescription, the last term (the dyon mass) on the r.h.s. of (3.1a)

is added to the standard bosonic part of the action of the Georgi—Gle&Sb@)y
model. The “left-handegt matrices” are defined by the following relations,

B A A
V=5 =1o o

y,? =1 )/,i_ =iogj,
oi being Pauli matrices. The matrix notation féf ande,

or, explicitly,

e
V, ==—V2? o = 18,

is used in (3.1a) and (3.1b).
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The Higgs fieldp develops a nonzero vacuum expectation value, so that in the
unitary gauge

{(@)vac — CT3

and only the third componer\l3 (photon) remains massless. In this gauge the
fermionic sector consists of four massless left-handed ferm;dﬁ.,t_ ¢ and

® =y carrying the electromagnetic chargele] and [+1€], respectively
(the Iower index 1, 2 is th8U2) group one). The gauge-invariant currenstsf
fermion,

IO =y Oy,

has the anomalous divergences

39,99 = S%Zemps: FuvFop. (3.3)
The Julia—Zee dyon solution is
o [K(r) —1]
V& = g I ,
PO g
J(r
Va 8alj( )a |q(|r) (3.4)

Pa = (f)aH(r)/|Q| ,

wherei ando indicates space and time directioass anSW?2) vector index, (i.e.
internal direction) and

-
I
= | =

under the boundary conditions

H(r) andK (r) are exponentially small at> ¢~1/q, r > ¢~!/x. Throughout this
paper we are primarily interested in the dynamical properties of fermions far from
the dyon centre, i.e. we assume the limit

C— 00 K—0 (3.6)

to be taken whenever possible (otherwise the funcdn) will be explicitly
indicated). Note that in this limit dyon size vanishes

ro — 0. (3.7)

Throughout this paper we treat the configuration (3.3) as a classical background
one, though we do not assume the perturbations to be small. Thus the generating
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functional for the fermionic Green functions in the presence of a dyon

_ _ _ dyon
2O, £] — <exp[ [Ev+i0 d4x}>

(we omit the flavor index whenever possible as well as the summation syes
represented by the functional integral

Zvone £] = /dvﬂ dy exp[-Sy,, + gauge fixing term+ ghost term]

2
< [ TTaw® i exp[—sm, + @+ Js)d“x] (3.8)
s=1

with the following boundary conditions:
Vu(x, 1) = Vi(x, 1)
o(X, 1) = @?(X) t — Foo. 3.9

Equation (3.3) implies ('t Hooft, 1976a) that the change ofdtheflavor is equal
up to the winding number of the gauge field (1),

AN® = —q.

We first show that there exist configurations of the bosonic fields, obeying the
boundary conditions (3.9) and havigg= —1 and that, as opposed to the vacuum
sector, in the dyon sector the actifp,,, for these configurations can be arbitrarily
close to zero. This means that the supression factoreq{st e?) does not appear

in fermion-number—nonconerving matrix element. Consider the configuration

Vo = t2naq(r, t)/i,

Vi = ?m?miau(r, t)/i + V2, (3.10)
¢ =9
whereay(r, t) anday(r, t) obey
ao(r, 00) — ay(r, £o00) — 0. (3.12)

The action functional for this configuration reads

4 o0 o0
Sup = ?”/0 dr/_ dt[(daq — dra0)’r? + 2K%(aZ + ad)] (3.12)

and the winding number (1) reads

o0 400
q= = / dr / dt(d, [ao(L K)o [as(1 K)2]) (3.13)
T Jo —00
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i.e., invirtue of (3.5) and (3.11),

q=Lim /m dt a(r, 1). (3.14)
T —

o0

Note that the last expression can be obtained from (3.13) in the limit (3.6) and
(3.7) only ifag(r, t) satisfies

a(r =0,t)=0. (3.15)

An explicit example of a configuration obeying (3.11) and (3.15) and having
q=-1is

ao(p/r,t) = =0 p(r, 1),

aO(p/r! t) = —8'[p(r, t)! (316)
with
o(r, t) — % log [n3(r? +t%) + 1] — Z—t[ui(rz +t3) +1] ", (3.17)

wherepu; is some mass scale ands a positive number. The value of action for
the fields (3.10) and (3.16) is

52
St = 2z e(L+ O(e) + 0(u1/0))

and can be arbitrarily small for smalland w1, Q.E.D.

In the vacuum sector, fermion-number—breaking matrix elements are also
suppressed by negative powerscoft Hooft, 1976b). This suppression occurs
because the zero fermion modes far from the instanton are proportionfﬂ{f'o
and the instanton siza,s; is bounded from above by . Thus, it is instructive
to investigate the zero fermion modes in the external field (3.10) in order to find
their c dependence. For the sake of convenience we consider thedjedasla;
of the form (3.16). Since the external field is spherically symmetric, it is natural
to choose a spherically symmetric anstaz for the zero modes. A most general
spherically symmetric fermionic field has the following form:

o 1 r dr/
wa((,)(x,t) = (V8anr) exp(/ K(r’)v) Xt (X, 1) (3.18)
[o¢]

wherea = 1, 2and = 1, 2 are Lorentz and gauge group indices respectively, and

Xel (X, ) = a1 xa(r, 1) — i TggepNaxa(r, t). (3.19)
Introducing the compact notation

=)
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we obtain the following equation for the zero mode

. . . K .
x© - [(at +it20 p) +iT2(dr — iT2dp) + r—(rl +|z2)] x@=0 (3.20)

In order that the solution be nonsingular at 0, one should impose the boundary
condition

(m+i)xr -0)-0 (3.21)
The solution of Egs. (3.20) and (3.21) is

xO(r,t)=N exp{—,o(r,t)}((l)), (3.22)

whereN is a normalization factor. Since the zero modes (3.18) and (3.22) is square-
integrable neax = 0 in the limits (3.6) and (3.7), the factdt is independent of

c far from the dyon center. This implies that the fermion-number—breaking matrix
elements in the presence of a dyon are not suppressed by negative powers of
Note that, as is seen from (3.17). The zero mode has the following asymptotic
behaviour as? + t? — oo,

Vf ~ r—l(rZ + t2)—1/2,

so thatits normyy v d*x is logarithmically divergent in the infrared region. This
fact is in complete analogy to the Schwinger model (Krasniébual, 1980a,b;
Rothe and Swieca, 1979; Schroer, 1978).

The nature of the configuration (3.10) is most transparent in the unitary gauge
of Arafuneet al. (1975) and Englert and Windey (1976). Performing the transfor-
mation to this gauge, we obtain in the limits (3.6) and (3.7)

1
Vo(u) = i—Tsao,

1
VO = Srgay + VP2, (3.23)
¢V = cr,

whereVP is the Dirac expression for the vector-potential of the dyon carrying.
From (3.23) it is clear that the configuration (3.10) is purely electromagnetic.
Moreover, the electromagnetic field of the configuration is just the dyon one,
while the electric fieldg; = (i /€)Sp K13 i

4n;
Ei = ?I(aoal — 01Q)
and is directed along the electromagnetic field, so Hiat£ 0, EH # O (pro-
duced by dyon)(c.f. Introduction section); So this argumentimplies strong fermion-
number-breaking in the presence of dyon.
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4. MASSLESS LEFT-HANDED FERMION
IN THE FIELD OF A DYON

This section is devoted to the study of left-handed massless fermion in the
external field (3.10), in the limits (3.6) and (3.7). It is convenient to introduce the
operator of total angular momentum (Deredial., 1976):

Mi = —i&ijiXjok + %ai + %ri. 4.1
this operator commutes with Dirac operaliyr
D =y (3 + Vi),
as well as with the operatots1 andon. The angular part of the Dirac operator,
Dq = irox(d — k)@ + Vi) — ioxn,

commutes withrn and anticommutes witkn,

[oini, Do)y = 0. (4.2)
It is a matter of straightforward calculation to verify the following identity:

D2 = M2, (4.3)

There exist two eigenfunctions bf with zero eigenvalue, namedy, andr;‘ﬁem N,
(¢ andl are the Lorentz and gauge group indices respectively), andl -4(2)
eigenfunctionsyys, of M2, which can be chosen to satisfy

M2Yamsy = I(J + L)amsy I =1, 2...,
M31//JM5u = Mvyymsy M =0,£1,...,£],
NYamsy = Yamsy 6 = £1,

oNYamsy = Vamsy vV = 1.

(4.4)

the functionyryusy(J # 0) from a set of functions, which is complete in the sub-
space withJ # 0 and orthonormal on a sphere. Thus, the fermion fijelchn be
decomposed in the following way:

V) = YO0+ T3 R Dy (@, @), (45)

IMS v

wherey ©(x, t) is given by (3.18) and (3.19) (but the fiejdneed not satisfy the
Dirac equation). It is convenient to introduce the compact notation

- s

gw _ i (U
- IMS

\/E Uil
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and to rewrite the fermionic part of the action (3.1b) in the following form:

Siy = S0+ Z Z Sims (4.6)
J#0 M,s
where
SJZO = /dl’ dt)?DJ:()X, (4.7)
Sw = —i/dr dt u™W DJ,;UJM(S, (48)
Dj_o=0 — ifza() +i rz(8r — i‘L’za.]_), (49)
. . . JIJ+1
Djs =0 —idag—ite(d —iday) + #H (4.10)

(the limit (3.6) and (3.7) is assumed).
The form of the vector potential (3.10), the decomposition (4.5) and the
actionsS;—_g and Sy are invariant under the following transformation:

x — €7y,

JMS

u™ s Py (4.11)

a—>at+af a—>a+ap,

whereg(r, t) is some real function. The transformation (4.11) is a special case of
gauge transformation, the gauge function

g(x,t) = expit®n?p(r, )] (4.12)
being spherically symmetric. For this gauge function to be nonsingutas=ad,
the functiong should vanish at the origin,

B(r=0,t)=0. (4.13)

According to the decomposition (4.5), the functional measure in (3.8) can be
rewritten in the following form:

2

1_[ 1_[ dl/,(s)d,;(S) — 1_[ ﬁ |:d)((s)d1/7(s) 1_[ du(s)JMadU(s)JMa:| (4.14)

s=l x,t rt s=l JM$

Thus, the functional integral over fermions in the external field (3.10) reduces to an
infinite product of functional integrals over the two-dimensional fermionic fields
x(r,t) andu’™ (r, t) (defined on a half-plane), the relevent action functionals
being given by (4.7) and (4.8).

We begin the discussion of the above action functional by deriving the Green
function of zero-angular-momentum fermions. Since the Dirac operator (4.9) in
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the limit of a pointlike dyonis ill defined at = 0 [ ], we consider the full operator
for the field x (cf.(3.20)),

DYy — & —imoa0 + i T2(8 — @) + g(q —i1)). (4.15)
the Green function Gr{; r’t’) obeys the following equation:
DYWL G(rt;r't) = 8(r —r")s(t —t'). (4.16)
To derive the boundary condition f@, we assumme for simplicity the function
F to be step function,
F(r)=6(r —rp)

whererp isthe dyonradius. Atthe end of our derivation we shall take the limit (3.7).
We also assume that the functicsgsanda; are finite and smooth at= 0. The
standard arguments of the theory of differential equations leads to the following
behaviour of G((t; r't’) near the origim = O:

Ga(rt;r't’) = 0(2), }

Go(rt: 1't) = (), (4.17)

whereG;, = Z2G.
From Egs. (4.15) and (4.16) it follows that G {r't") is continuous at = rp,
and from (4.17) in the limit (3.7) we obtain the following boundary condition:

(1 - 3)G(0t;r't'y =0. (4.18)
Note that in terms of the fielg (r, t) this boundary condition corresponds to

(3.21). Thus, in the limits (3.6) and (3.7) the Green function of the fietibeys
the equation

Dy—oG(rt;r't)y = 0. (4.19)
Vo =0 (4.20)

or
a=0 (4.21)

and consider the functioay (r, t) obeying the boundary condition (3.11). In this
case G(t;r't’) can be obtained in the closed form, namely,

G(rt;r'ty = expl—o(r,t) + o (r', t') + ity (r, )]Go(rt; r't") explioy (r', t')],
(4.22)

where
o(r,t) = / dr”/ dr’[D@r —r", t —t")+DB(r +r",t —t")]
0 —00

x dprag(r”, t"), (4.23)
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t
y(r,t) — / do(r, ") dt". (4.24)

—00

Here D(r, t) is the propagator of the two-dimensional massless scalar field (the
inverse two-dimensional Laplacian),

1
p(r,t) = y log u3(r? +t?) (4.25)

(2 is an arbitrary mass scale (Klaiber, 1968; Wightman, 1966), Gnis the
solution of the “free” equation

(B¢ + 1120, )Go(rt;r't") = 8(r —r")s(t —t’),
obeying the boundary condition
(1 — 13)Go(0t;r't’) = 0.
Explicitly
Go(rt;r't) = (0 —it20)[D@r — 1/, t =)+ D(r +r1',t —t)13]

L [t-t)—in(r—r)  (t—t)—ita(r +T)
‘E[(r—r/)2+(t—tf)2 (r+r)2+ (1)

Note that the definitions (4.23) and (4.24) imply

] . (4.26)

#00,t)=0  y(0,t)=0. (4.27)

Now we turn to the discussion of the action (4.8). In this case we cannot find
the exact Green function of the operaf®j ;, So we develop perturbation theory
aroundag = a; = 0. The free propagatds’ corresponding to the action (4.8)
obeys the equation

<8t — 0 + @) Glrt;r't)y =8 —r')s(t —t), (4.28)

where

b(J) = /I + 1).

It is straightforward to prove that the solution of (4.28) has the following form

, b
Btﬂibz+b <3r - I’_) g{bsz
G’ = , (4.29)

b
(—ar - r—) Rez1b 3 NRoz_b
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where the functioiy(rt; r’t’) obeys the equation
k
<a§ + 92+ r—2> Re(rt;r't’) = 8(r —r")s(t —t’). (4.30)

Using the properties of the Legendre functiQp,(2) listed in Appendixes A and
B, one can verify that the solution of (4.30) is

r—r’)2+(t —t/)z]

2rr’

d(k)=,/k+%—%. (4.32)

The free propagator (4.29) vanishesras-(r')? + (t — t")? tends to infinity as well
as atr = 0 (see Appendixes A and B).

To conclude this section we summarize the analogus properties of the left-
handed fermion in an external gauge field of the form

Re(rt;r't) = —%Qd(k) |:1+ ( (4.31)

where

~ 1
VO = i_T3aO(r! t)y

~ 1
Vi = i—Tsnial(r, t),
¢ = Cta. (4.33)

This field is purely electromagnetic and differs from the unitary gauge configura-
tion (3.23) by the Dirac vector potenti®|®. In this case the angular momentum
operator is the standard one,

~ : 1
M —sijk/d3rrJTok+§ai, (4.34)
and the decomposition analogous to (4.5) reads
1 "
PO =23 3 v e, (©, @), (4.35)
r,k,s v

wheret,,;, and the eigen function dfi2, M3, 3 ando n with the eigenvalues

1 1 1

andv(v = £1),

respectively. The fermionic action in the enternal field (4.33) can be rewritten



480 Joshi and Rajput

asf[cf.(4.6)]
S\/”// == Z éﬁkﬁ!
nks
where
& = i / dr dt™(r, £) B ™ (1, 1), (4.36)
and

. o
Bins = & — 1880 — iza(dr — 1820) + - 71

The free operato&"” corresponding to the action (4.36) can be found in the same
way asG”.

n
M (ar - F) Reo_n

n
G = n :
(<0 =) Mein AR

(4.37)

5. THE ZEROTH-ORDER APPROXIMATION

We describe an approximation for evaluating matrix elements of zero-angular-
momentum fermionic fields in the presence of a dyon, i.e. the matrix element of
the following form:

W(rits, ..., Fth) = CONEND, -0 X ONEN)X(ELED, -0 XOTRE ™" (5.1)

Using the representations (which are inverse to (4.5) and (3.18))

x = @r)¥?r fea.w(j)(x, t)sin®de do

xS =i(8r)Y2r / a8, (x, ) sin@ do do (5.2)

al

one can relate the matrix elements (5.1) to the matrix elements of the initial fields
W in the presence of a dyon.

The functional integral representation (5.1) for the matrix elements (3.8) can
be rewritten in the following way:

W(rity, ..., rty) = /dvﬂ deexp[-Sy, — SV, ¢;rity, ..., ratil

+ gaugefixing terms- ghost terms]
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where the field%/,, , obey the boundary conditions (3.9) and
- (s
_§ S, —
e = /Hd\y ay@e SV y(rity), ..., x(rth)-

s—-1

We search for the minimum of the effective acti8p, + Sand assume that,
to the lowest order i? andc™?, the matrix element (5.1) is

W(rltl’ T r;\ltl/\l) = exp[_(S\/,w + é)min]-

We also assume that the fields and ¢ realizing this minimum take the form
(3.10), where the field(r, t) obeys the boundary condition (3.11) (we are still
proceeding in the temporal gauges (4.20) and (4.21)). Under the above assumptions
the fermionic contribution to the effective acti@takes a particularly simple form

S=-2) ") (23 +1)log DetjD;;(a1)] — 2log Det D _o(as)]

J£0 6
N N
+ Z[U(rpv tp) —o(rp, tp)l —log {EXP[ZiTép)V(rp' tp)
p=1 p=1
N
+ TPy (), t;))] WOt ...,r'Nt’N)} (5.3)
p=1

where the operatorB ;_o and D ; are defined by (4.9) and (4.1@),andy are
defined by (4.23) and (4.24), aldO(rty, ..., r(ty) is the “free” (no interaction

with a;) matrix element (5.1), i.e. the Wick expansion of (3.1) with the pairing
(4.26). Equation (5.3) is a direct consequence of (4.5)—(4.7) and (4.22); the factor
2 in the first two terms on the r.h.s. of (5.3) comes from the summation over the
flavours, while the factor (2 4 1) in the first term of the r.h.s. of (5.3) comes from
the summation over the third component of angular momentum.

Now we make another assumption that will be justified in our forthcoming
paper. We assume that the first term on the r.h.s. of (5.3) is negligible. Since the
a; dependences of the third the fourth terms in (5.3) are explicit, we only have to
evaluate the second term. This can be done in the same way as in the Schwinger
model (Schwinger, 1962), so we only sketch the derivation. It is convenient to
adopt the following unified notation. By(: = 0, 1) we denote the coordinates in
the ¢, r) half-plane:

o=t &=, (5.4a)
so that

2=gf =r>+t> d% =drdt. (5.4b)
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The variation of the second term on the r.h.s. of (5.3) with respect to the variation
ofa; is

8(—2log Deti Dj_g) = —2 / d?¢ Sp Qg £)sau (). (5.5)

From the explicit expressions (4.22) and (4.26), it follows that the contribution
of the second (nonsingular) term on the r.h.s. of (4.26) vanishes. Using the point-
splitting regularization,

G(e, ) = 5 mIG(E/e) + G(&/ — o)),

E+e
G(/e) = eXIO(i L at(E’)dEZ> G, & +e),
which is invariant under the gauge transformation (4.11), we obtain

1
Sp G(Sv S) = —;ata(r, t)7
whereo is defined by (4.23). From (5.5) we get

2 2
8(—2log DetiDj_g) = — / drdtdo -da; = —— /08[(&2 + 8¢)o]dr dt.
T T
(5.6)
The last expression has been obtained by integration by parts with the use of (4.27)

(this is another way to understand the necessity of the boundary condition (4.27)).
Finaly, from (5.6) we find

1
2log DetiDj_g = ——/o(arz | 2)o dr dt (5.7)
T

In terms of the variable, the actionS,,, can be rewritten as (see (3.12); we
still take the limits (3.6) and (3.7))

Svp = g / dr dt[(92 + 82)o]* - r2 (5.8)

so the effective actioSy, + S, within our approximation, is at most quadratic in
o [the last term in (5.3) is, in fact, linear in and hence iw] and the quadratic
part is the sum of (5.7) and (5.8),

S(o) =Sy, —2log DetiDj_g = %/o(r, t)L, o (r, t)dr dt, (5.9)

where
2 8t
(07 +02) + Z

Lr,t - -
b4

(92 + 82)r?(97 + 8?) (5.10)
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We conclude that, within our approximation, the matrix elements (5.1) are

equal to
W(rity, ..., ryty) =exp{—<&+/a]drdt> }
min

xWOraty, ..., rty). (5.11)

where

N
/drdtoj =Y [o@pte) —olp th)] + Zlf(p))/(rp, tp)
p-1

+ th(p)y(r;),t;)) (5.12)

is the linear term in (5.3). To find the explicit expression for the exponential in
(5.11), it is sufficient to determine the Green functjo(rt;r’t’) of the operator
(5.10). This function obeys the following equation

Ligp(t;r't) =8(r —r)s(t —t'). (5.13)

Since the function
o(r,r]j)— —/ et r't)j@’, t)dr’ dt,

realizing the minimum of; + [ jo, should obey the boundary condition (4.27),
the defining equation (5.13) should be supplemented by the following boundary
condition:

orpOt;r'ty=0 (5.14)
As is clear from (4.30) and (A.15), the solution of (5.13) and (5.14) is

prt;r't) = %n [Rezjan2(rt;r't) — D(r —r',t —t') = D(r +1/,t —t)]

(5.15)
where the functiom is defined by (4.25). Equations (5.11), (5.12), and (5.15), are
sufficient to evaluate the matrix elements (5.1) within our approximation. Rather
than present explicit expressions that are somewhat complicated, we prefer to
describe the functional integral fit for these matrix elements. From (5.11), (5.12),
and (5.15) we find

W(rsty, ..., rity) = / [Jdx$dxPds dy x expSs — S, — Sxo)x (1, 1)
rt,s
(5.16)
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where the fieldsZ, n, and xg are defined on a half-plarfe € (0, c0), t € (—o0,
+00)} and obey the boundary conditions

9 2(0,t) — 9rn(0,t) — (1 — 73)x0(0, t) — 0.

The effective actions are

1 5 n e?
sZ:_E/drdtz(a, + 0 —W)E,
1 2 2
S7=+§ dr dtn (97 +97)n,

S, = /df dty, Dy—o(a = 0)xo,

with D;_q defined by (4.9), and
t

—00

X9, 1) :exp[—&(r,t)+it2/ 8r5(r,t’)dt’} x&,

with
o(r,t)— %n[E(r,t)-ﬁ-ﬂ(ht)].

Note that the integrals (5.16) are Gaussian and the propagators of thefiaiabs
n are

Re/ar2(rt;r't) [-D@r —r',t —t)—D(r +r',t —1t)],

respectively, while the propagator gf is given by (4.26). Note also, that the

fit (5.16) is analogous to the (euclidean) functional integral counterpart of the
VLS-like operator solution (Lowenstein and Swieca, 1971; Velo, 1967) of the
analogue (Krasnikoet al, 1979) of the Schwinger model, transformed to the
temporal gauge.

6. DISCUSSION

We want to conclude this whole paper with these four points.

6.1. No Well-Defined Charge Symmetry at the Dyonic Core

Since it has been demonstrated (Mandelstam, 1976, 1979; Rubakov, 1981a;
't Hooft, 1978) that the helicity-conserving and charge-mixing boundary con-
ditions to be imposed on fermionic fields at monopole core violate the charge
superselection rule. This problem may possibly find a solution by establishing the
formation of chiral condensate, allowing the flipping of helicity and proving an
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understanding of the role of dyon as catalystin baryon-number—nonconserving pro-
cesses. This problem of chiral condensation, at the dyonic core requires the explicit
field solutions in the interior region of dyon. We have investigated the extended
structure of non-Abelian dyon in Section 2 by constructing suitable Lagrangian
density (2.17) and angular-momentum tensor (2.18) in non-Abelian gauge theory
of dyons. Since an Abelian dyon moving in the generalized field of another dyon
carries a residual angular momentum (field contribution) besides its orbital and
spin angular momenta. Keeping in mind this fact and Julia-zee dyon solutions
(2.24) and (2.25) we have constructed the residual part of the angular momentum
(i.e. field contribution) in the interior as well as exterior regions of dyon (2.39)
and (2.40). We can conclude by Eg. (2.41) that when a fermion scatters from the
core of the dyon and changes its charge, the lost charge must be deposited on the
dyonic core (in order to maintain overall charge conservation) and the core must
neutralize itself by some sort of pair creation process. This pair creation effect
leads to baryon number non conservation in the presence of non-Abelian dyon has
been undertaken in rest of the part of the paper. The dyonic core has remarkable
abilities to absorb baryon and lepton numbers at no loss in the energy.

6.2. Relation to the@ Vacuum Structure

Since the vacuum structure of the gauge theories is most apparent in the
temporal gauge (4.20) (Callenal., 1976; Jackiw and Rebbi, 1976), itis convenient
to proceed in this gauge. From (5.15) we find that the temporal gauge saddle-point
field a;~ can be represented as

t
ar(r t;ry, ) = Ot — t)8(r —rq) — 83/ Rez/ar2(rt’; roty) dt’

— 0t Re2/ar2(rt; roty) (6.1)

From (A.16) it follows that the last term vanishestas> oo so the fielda; ™
interpolates between the following two configurations:

ay = (r,t = —oo/r)) =0, (6.22)
ay (r,t =oo/ry) = 0= Q(r/ry), (6.2b)
where
+00
Q(r/r1) =m0(r —r1) — o Re/ar2(r, t';0,r1) dt’

The field (6.2b) is a pure gauge (see (4.11)); from (A.15) and (A.16) we find the
following asymptotics of the gauge functi@rr

QO/r)=0  Q(oo/r1) = 7. (6.3)
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Now we recall the fact that the gauge transformation (4.11) in terms of the initial
fields A, ¢, andy is just the usual gauge transformation with the gauge function
(4.12). Thus, the saddle-point configuration (i.e., the configuration (3.10aith
substituted fom) interpolates between the fields

Vit =00) =V ¢(—00) = ¢%,
Vi(t = +00) = gaVi*gy" + 9edigy
o(t = +00) = gop?dy" = ¢?,
where
0o = exp(t?n?Q). (6.4)

From (6.3) we conclude that the gauge function (6.4) has just the same form as
that considered in Callegt al.(1976) Jackiw and Rebbi (1976) and its topological
number is equal te-1. The arguments as those of Calktral. (1976) Crewether
(1981) Jackiw and Rebbi (1976) show that the vettpyq] |M, 0) (U [gq] being

the operator of the gauge transformation with the gauge function (6.4)), which is
the gauge transform of the perturbation theory dyon $tdted), carries one unit

of each flavor. This could also be anticipated, since the opethitgs] carries

one unit of each flavor, as follows from the considerations of Cadteal. (1976)
Crewether (1981) Jackiw and Rebbi (1976). The gauge-invariant dyon state is a
linear superposition of the form

+00

IM,0) = > €"(U[ga])"IM, 0); (6.5)
N=—00
this is another way to understand the fermion-number breaking in the presence of
a dyon. In fact, the heuristic arguments of Section 3 are simplified in the temporal
gauge; indeed, the unboundedness from below (by any positive number) of the
action (3.12) can be established by the Derric-like (Rubakov, 1981) time rescaling.

6.3. The Unitary Gauge

The particle content of the theory with the action (3.1) is most apparent in
the unitary gauge. In this gauge it makes sense to consider the matrix element
(eaﬂlyfilll(fg)dy"” (a, B = 1, 2 are Lorentz indices, the fieldsf) are defined in
Section 3). Since the opera‘mblf)\y(_z) carries one unit of each flavor, the nonzero
contributions to this matrix element come from the unitary gauge configurations
with the winding number equal tel, in particular, from the field (3.23) and (3.16)

(or (3.23)). The latter contribution is proportional to the zero fermion modes in the
external fields (3.23) and (3.16), namely, it is proportional to

8aﬁ \IJ:’_Q\I‘E,S, (66)
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where the zero mod@" is just the zero modes (3.18) and (3.22) transformed to
the unitary gauge. Performing this gauge transformation (the corresponding gauge
function is described, e.qg., in Arafueeal.(1975) Englert and Windey (1976) far
from the dyon center, we obtain

Ll e
sin-®e
WY = B(r, t) 2 ,
- cosé(a
1 (6.7)
Cos-®
WY = B(r, t) 12 |
sin=ee?
2
where® and® are polar angles and
N e»rb)
B(r,t) = —
CO= e

Note that¥! is the CP conjugate of!. From (6.6) and (6.7) we conclude that
(eap q,fi\p@)wyon # 0, i.e. the Adler- BeII—Jacklw anomaly gives rise to flavor-
non-conserving and fermion-number—nonconserving transitions with charge
conservation.

6.4. Baryon-Number Breaking in the Presence of Dyon

The dyon (Julia and Zee, 1975) of tB&(5) grand unified theory coincides
asymptotically with the 't Hooft—Polyakov one for t%X2) group imbedded into
SU5) in the following way:

T= %diag(o, 0z, 0). (6.8)

This dyon is fundamental in the sense that it is characterized by minimal electric
and magnetic charge. With respec&d(2) specified by (6.8), the first-generation
fermions form the following left-handed doublets (in the unitary gauge),

() (5 (8 (%) e

other being singlets. In (6.9) the superscripts 1, 2, and 3 are colour indices.
If uandd quarks and electrons were massless, the above arguments would
be directly applicable to this case, so the matrix element
(utu?d3e)dvon (6.10)

would be nonzero, and coupling-constant- and unification-scale-independent. This
conclusion remains unchanged if other (massive) generations are taken into account
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(Rubakov, 1981b). The matrix element (6.10) corresponds to the process
p 4+ dyon— e* + dyon+ everything, (6.11)

and the arguments of the above paper imply that the cross-section of this paper is
independent of the coupling constant and the unification scale, i.e. it is roughly
O(1GeV~?). Unfortunately, the above discussion is not quite decisive. First, elec-
trons and quarks are massive. Naively, this seems to be inessential at distances
in comparison to the compton wavelengths of electron and light quarks. However
in the massive case the higher order corrections could destroy the boundary con-
ditions (3.21) and (4.18), thus invalidating the above analysis. For example, the
boundary conditions for fermions with extra magnetic moment (Kazetra,
1977; Kazama and Yang, 1977) differ from those given by (3.21). Second, in the
above considerations we completely ignored gluon self-interaction. So, further
investigations are required to establish the existence of processes like (6.11) and
to estimate the cross-section of these processes.

In our forthcoming paper, the study of fermion-number—violating matrix
element (f (ry, t,))%°" = (f)¥°n of the operatorf(r,t) = x(r, t)x2(r, t) +
Xz(l)(r, t)xz(z)(r, t) in presence of a dyon and density of the condensate of zero-
angular-momentum fermions (an estimate of corrections), guided by the anal-
ogy with the Schwinger model (Krasnikaet al, 1979; Nielsen and Schroer,
1977a,b) will be undertaken (In this section we further exploit the analogy used in
Sections to discuss the fermion-number breaking in the presence of dyon.), which
concludes that the approximation used is reasonable at least for the evaluation
of Green functions of fermions with zero total angular momentum, including
fermion-number—breaking Green functions.

APPENDIX A: LEGENDRE FUNCTION

In this appendix we summarize some relevent properties of the special
functions.

The Legendre functio®,(x) obeys the following equation. (Abramowitz
and Stegun, 1964; Bateman and Erdelyi, 1953; Gradshtein and Ryzhik, 1961):

d*Q dQ
2 m 'm
(1= x5 =27 +mm+ 1)Qn =0 (A1)
Its explicit expression fom = 0 is
1 x—1
=—=1 . A2

Qo(x) = —5log —— (A2)

It has the following asymptotic behaviour as— 1 (Bateman and Erdelyi, 1953)

XxX—1
2

Qm(x) = —% log —¥(m+1)+ ¥(1)+ O[(x — 1)logx — 1)]. (A3)
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From the representation (Abramowitz and Stegun, 1964; Bateman and Erdelyi,
1953; Gradshtein and Ryzhik, 1961)

Cm— 'm+1) m 1+m 31
— o m 1_1/2 m lF 1 —, m =
Qmx) b3 T(me 3 (m+ %)X + 5 T + > X2
whereF («, B; y; X) is the hypergeometric function, it follows that
r(m+1)

Qm(x) =2 ™ 1z "/? X1 4 O(x7?)) (A4)

r'(m+3)
at largeX. Q™ can be also expressed as (Abramowitz and Stegun, 1964; Bateman

and Erdelyi, 1953)
1\, —ya F(Mm+1) 2 1/21M+1/2
Qm(x) = (§ﬂ> (x*—1) m [X —-(x*=1) ]

. 'm+1' X — (x? — 1)¥?
X — — — s —
2'2 2’ 2(x2 — 1)1/2
Using the Stirling formula,
F(m) — e—m+m|ogm m_1/2(27'[)1/2(1 + O(m_l)),

as well as the definition of the hypergeometric series, we find at largad x
fixed

1 12 m+1/2
Q= (57) M2 2y [ 02 - 12" (as)

Now we derive the asymptotic expansion @f,(x) asm — oo, which is
uniformly valid at 1< x < oco. We use the method described by Thorne (1957)
and consider the functiop(r) defined by

. 172
y(r) = (S'”thf) Qucoshr).

From (A1) we obtain the following equation fg(t):

d? 1d
o2 Ayt w()y =0, (A6)
d2  tdr
where
1 1,
A—m+3 w(r) - Z(sinh 2T — 7). (A7)

We search for the solution of (A6) in the form of asymptotic series

V) = Ko(an) Y 120 Kale) 5 Rolo)
n=0 n=0

: (A8)
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whereK, are modified Bessel functions. Inserting (A8) into (A6), we obtain the
following recurrent relations:

T

v =2 [ [+ B2

+w(t)Th(z )i| de’,

Toa(r) = -2 / [R{{( - R“(”+ Fz’f;)+w(r')Rn(rﬂ dr' (A9)

By comparing the behaviours g{r) and Ko(At) at smallt, namely (see (A3)
and (Abramowitz and Stegun, 1964; Gradshtein and Ryzhik, 1961)

yr = —logt + O(1),
Ko(At) = —logt + O(1),
we find that
To=1 (A10)

Equations (A9) and (A10) are sufficient to determine the unknown funciigns
andR,. Note that at smalt

Ry=0(r) n=>0,
T.=0(? n>0,
Thus, the desired expansion is

Qm(costir) = (Sintht>1/2 {KO [(m * %> T} 2 Ll)m

=0 (m+3)
Ky L(m‘i‘ )] X Ra(2) } A1l
m + 2 g m— 2) (AL1)

Note that the asymptotic expansion (Al1l) is a particular case of Thorne’s (1957)
and is uniformly valid in the region 8 t < oo. Performing the change of vari-
ables,r = z/(m + 1/2), we find another asymptotic expansion,

Om (coshmfr ;) = Ko(2) :1 e 2 Z Tn(Z) }

2

Kl(z)z Rn(Z)

- Al2

(m+12 2 Z (m+ ) (A12)
where

Ri=Th=0@1) z—0 (A13)
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APPENDIX B: THE FUNCTION Ry (rt;r’t")

Ri(rt;r't’) is defined by (4.31) and (4.32). From (Al) and (A3) it follows
that this function obeys (4.30). From (A3) we find

2 enaenny L (r =r)?+ @ -t)?
St,((rt,rt)_El g e

+O{[(r —r')?+ (t —t'Y]logl(r —r')*+ (t —t')’]} (A14)
atsmall ¢ —r’)? + (t — t')2. Equation (A4) yields

+ D widee + 11— wy
21

rr’ 1/d(k)
9{,( = O{(K) [m} r—20 (A15)
as well as
_r\2 t _ t/ 2 —1-d(x)
ER,(Z(X(K)[(r r)r:_/( ) :| r’+t2 - oo,
1 rd1+d
a(k) = — (1+dl)) (AL6)
ACKNOWLEDGMENT

One of the authors, S. C. Joshi, is thankful to A. Sen (M. R. I. Jhusi,
Allahabad) for useful suggestions and DSA/COSIST (SAP), New Delhi, for
providing financial assistance.

REFERENCES

Abramowitz, M. and Stegun, |. A. (ed.) (196#andbook of Mathematical Functioy®National Bureau
of Standards, New York.

Adler, S. (1969)Physical Reviewt 77, 2426.

Arafune, J., Freund, P. G. O., and Goebel, C. J. (19%&a)tnal of Mathematical Physicks, 433.

Bateman, H. and Erdelyi, A. (1953). Higher-Transcendental Functolng (McGraw-Hill, New York.

Belavin, A. A., Polyakov, A. M., Schwarz, A. S., and Tyupkin, Yu. S. (19P)jysics Letters B8, 85.

Bell, J. S. and Jackiw, R. (1969 uovo Ciment®1, 47.

Bhakuni, D. S. and Rajput, B. S. (1982kttere al Nuovo Cimentd4, 509.

Blaer, A. S., Christ, N. H., and Tang, J. F. (199hysical Review Letter$7, 1364.

Cabrera, B. (1982Physics Review Letted8, 1378.

Callen, C. G. (1982aphysical Review D: Particles and Fiel@5, 2141.

Callen, C. G. (1982bphysical Review D: Particles and Fiel@§, 2058.

Callen, C. G., Dashen, R. F., and Gross, D. J. (1976ysics Letters B3334.

Christ, N. and Jackiw, R. (1980physics Letters B1, 228.

Crewether, R. J. (1981Proceedings of the International Seminar on High-Energy Physics and Field
Theory Serpukhov.

Dereli, T., Swank, J. H., and Swank, L. J. (1978hysical Review D: Particles and Fieldq, 3541.



492 Joshi and Rajput

Derrick, G. H. (1964)Journal of Mathematical Physids 1252.

Dirac, P. A. M. (1931).Proceedings of the Royal Society of London, Series A: Mathematical and
Physical Scienc&33 60.

Dirac, P. A. M. (1948)Physical Reviewl4, 817.

Dokos, C. P. and Tomaras, T. N. (198Bhysical Reviev21, 2940.

Englert, F. and Windey, P. (197&hysical Review D: Particles and Fieldg}, 2728.

Fairbank, W., Larue, G., and Phillips, J. (198Rhysical Review Lette#6, 967.

Gradshtein, I. S. and Ryzhik, I. M. (196 Tables of Integrals, Series and Prodycd&ademic Press,
New York.

Jackiw, R. (1977)Review of Modern Physiet9, 681.

Jackiw, R. and Rebbi, C. (197@)hysical Review Letteid7, 172.

Joshuna, N., Goldberg, M., Jang, P. S., Park, S. Y., and Kameshwar, C. W. (RBySical Review D:
Particles and Field4.8, 542.

Julia, B. and Zee, A. (1975Rhysical Review D: Particles and Field4, 2227.

Kazama, Y. and Yang, C. N. (197 Bhysical Review D: Particles and Field$, 2300.

Kazama, Y., Yang, C. N., and Goldhaber, A. S. (19Physical Review D: Particles and Fields,
2287.

Klaiber, B. (1968)Boulder Lectures, Vol. 10A5orden and Breach, New York.

Krasnikov, N. V., Matveey, V. A., Rovakov, V. A., Tavkhelidze, A. N., and Tokarev, V. F. (1980a).
Physics Letters B7, 103.

Krasnikov, N. V., Matveeyv, V. A., Rovakov, V. A., Tavkhelidze, A. N., and Tokarev, V. F. (198&Hr.
Mat. Fiz.45, 313.

Krasnikov, N. V., Rubakov, V. A., and Tokarev, V. F. (197Bhysics Letters B9, 423.

Krasnikov, N. V., Rubakov, V. A., and Tokarev, V. F. (1979adernaya Fizik&9, 1127.

Lowenstein, J. H. and Swieca, J. A. (197Ahnals of Physic88, 172.

Mandelstam, S. (1976Rhysics Reports Physics Letters (partZ3) 245.

Mandelstam, S. (1979Rhysical Review D: Particles and Field$®, 249.

Marciano, W. and Pagels, H. (197®hysical Review D: Particles and Fields}, 531.

Nielsen, N. K. and Schroer, B. (1977&)uclear Physics B.20, 62.

Nielsen, N. K. and Schroer, B. (1977hysics Letters B6, 373.

Pagels, H. (1976Physical Review D: Particles and Fields, 343.

Pak, N. (1980)Progress of Theoretical Physiég, 2187.

Peccei, R. D. and Quinn, H. (197 Nuovo Cimento A1, 309.

Polyakov, A. M. (1974)JETP Letter0, 194.

Preskill, J. P. (1984)Annual Review of Nuclear and Particle Scier3ze 461.

Price, P. B., Shirik, E. K., Osborne, W. Z., and Pinski, L. S. (19P5)ysical Revievg5, 487.

Price, P. B., Shirik, E. K., Osbhorne, W. Z., and Pinski, L. S. (19P8ysical Review D: Particles and
Fields18, 1382.

Rajput, B. S. (1982)_ettere al Nuovo Ciment85, 205.

Rajput, B. S. (1984)Journal of Mathematical Physi@b, 351.

Rajput, B. S., Bhakuni, D. S., and Negi, O. P. S. (1982}tere al Nuovo Cimentd4, 589.

Rajput, B. S., Bhakuni, D. S., and Negi, O. P. S. (1986kjovo Cimento A2, 72.

Rajput, B. S. and Gunwant, R. (198&)dian Journal of Pure and Applied Physi2s, 583.

Rajput, B. S., Kumar, D. A., and Negi, O. P. S. (198@rophysics Letter, 381.

Rajput, B. S., Kumar, S. R., and Negi, O. P. S. (198%)ian Journal of Pure and Applied Physi2§,
638.

Rajput, B. S., Negi, O. P. S., and Bhakuni, D. S. (1988}tere al Nuovo Ciment86, 499.

Rajput, B. S., Rana, J. M. S., and Chandola, H. C. (198&gress of Theoretical Physi&2, 153.

Rothe, K. D. and Swieca, J. A. (197 Bhysical Review D: Particles and Field$, 541.

Rothe, K. D. and Swieca, J. A. (197®nnals of Physic417, 382.



Angular Momentum Operator and Fermion-Pair Creation for Non-Abelian Fields 493

Rubakov, V. A. (1981a)JETP Letters33, 645.

Rubakov, V. A. (1981b). Monopole-induced baryon-number nonconservdtietitute of Nuclear
ResearchPreprint P-0211, Moscow.

Rubakov, V. A. (1981c)Zhurnal Eksperimentalnoi i Teoreticheskoi Fiziki, Pis’'8® 658.

Rubakov, V. A. (1981d)Proceedings of International Seminar on High-Energy Physics and Field
Theory Serpukhov.

Serebryakov, M. S. (1981). Diploma Work, Thilissi State University, Thilissi.

Schroer, B. (1978)Acta Physica Austriacal9 (Suppl) 155.

Schwinger, J. (1962Physical Revievt 28 2425.

Schwinger, J. (1966aRhysical Revievt441087.

Schwinger, J. (1966bRhysical Revievt51, 1048.

't Hooft, G. (1974).Nuclear Physics (part BY9, 276.

't Hooft, G. (1976a) Physical Review Lettei37, 8.

't Hooft, G. (1976b) Physical Review Letters D4, 3432.

't Hooft, G. (1978).Nuclear Physics B38 1.

Thorne, R. C. (1957)Transactions of the Royal Society of Londt®, 597.

Velo, G. (1967)Nuovo Cimento A2, 1028.

Wightman, A. S. (1966)Cargese Lectures 1966

Witten, E. (1979)Physics Letters B6, 283.

Wu, T. T. and Yang, C. N. (1975Rhysical Review D: Particles and Fieldk2, 3845.

Yoneya, T. (1984)Nuclear Physics (part B232, 356.



