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We study the extended structure of non-Abelian dyons, the generalized electromagnetic
field and the resulting residual angular momentum in the interior as well as exterior
regions of the dyon, and it has been demonstrated that at the dyonic centre there exists
no well-definedU (1) charge symmetry and the density of residual angular momentum
becomes infinity. The mechanism of creation of a fermionic pair at the dyonic core
involving the extremely high density of residual angular momentum has been devel-
oped, which leads to baryon-number nonconservation in the presence of non-Abelian
dyons. The fermion-number–breaking amplitudes in the presence of a non-Abelian dyon
have been analyzed and are not suppressed by exp(−const/e2). Further, the relevant
properties of left-handed fermions in a non-Abelian field has been summarized and
the zeroth-order approximation is described. Within this approximation the density
of the fermion-number–breaking condensate is found to beO(1), i.e. to be independent
of the coupling constant and of the vacuum expectation value of the Higgs field.

KEY WORDS: dyon; residual angular momentum; dyonic core; fermion-pair creation;
zeroth-order approximation.

1. INTRODUCTION

Though physicists were fascinated by the magnetic monopole since the in-
genious idea was put forward by Dirac (1931, 1948) and Priceet al.(1975, 1978)
about its possible experimental verification, renewed interest in this subject was
enhanced by the very strong argument of ’t Hooft (1974) and Polyakov (1974) that
the spontaneously broken gauge theories with compactU (1) gauge group guar-
antee the existence of smooth, topologically stable finite-energy solutions with
quantized magnetic charge. Extending this, Julia and Zee (1975) constructed clas-
sical solutions having electric and magnetic charges on the same particle, called a
dyon (Schwinger, 1966a,b).
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As such, the monopoles and dyons become an intrinsic part of all current
grand-unified theories (Dokos and Tomaras, 1980; Preskill, 1984), with enormous
potential importance in connection with their role in catalyzing baryon-number–
nonconserving processes (Callen, 1982a,b; Rubakov, 1981a), the quark confine-
ment problem of QCD (Mandelstam, 1976, 1979; ’t Hooft, 1978) and RCD (Rajput
et al., 1989), the unification of gravitation with generalized electromagnetic field
(Rajput, 1982, 1984; Rajput and Gunwant, 1988) and CP violation in terms of
nonzero vacuum angle of world (Witten, 1979). Keeping in view the result of Witten
that there are necessarily dyons, Rajputet al. (1982, 1986a,b) have constructed
a self-consistent and covariant quantum field theory of dyons and demonstrated
(Rajputet al., 1989) the validity of two simultaneous recent experimental results
about the existence of free fractionally charged quarks (Fairbanket al., 1981) and
monopoles (Cabrera, 1982) with magnetic charge of one Dirac unit. The dyon–
fermion dynamics has been worked out by various authors (Mandelstam, 1976,
1979; Rajputet al., 1989; Rubakov, 1981a), and it has been demonstrated that
the helicity-conserving and charge-mixing boundary conditions to be imposed on
fermionic fields at monopole core violate the charge superselection rule. A solution
to this problem may lie in establishing the formation of chiral condensate, allowing
the flipping of helicity and proving an understanding of the role of dyon as catalyst
in baryon-number–nonconserving processes. This problem of chiral condensation
at the dyonic core requires the explicit field solutions in the interior region of the
dyon. Investigating the extended structure of non-Abelian dyons in the present
paper, we have constructed suitable Lagrangian density and energy–momentum
tensor in non-Abelian gauge theory of dyons, derived the expression of generalized
electromagnetic field in the external and internal regions of extended dyon, and
showed that there is no well-definedU (1) charge symmetry at the dyonic centre.
The contribution of these fields to the angular-momentum operator of non-Abelian
dyon has been derived and the density of the resulting residual angular momentum
has shown to be infinity at dyonic centre.

Not long since, the existence of ’t Hooft–Polyakov magnetic monopole
(Polyakov, 1974; ’t Hooft, 1974) has been one of the most interesting features
of spontaneous broken gauge theories. Most of the known characteristics of the
’t Hooft–Polyakov magnetic monopole (mass, magnetic charge, etc.) manifest
themselves already at the classical level, the quantum effects giving rise toO(e2)
corrections (Jackiw, 1977). The only known exception is the deep relationship
(Christ and Jackiw, 1980; Pak, 1980; Witten, 1979) between the magnetic charge
and the winding number (Belavinet al., 1975) of the gauge field. In theories with-
out massless fermions this results in the Witten value of the charge of the quantum
dyon (Witten, 1979).QD = −eθ/2π , whereθ is the CP nonconservation angle. In
the present study we consider theories with massless left-handed fermions ((V-A)
theories). Our main purpose is to show that in these theories the above relationship
leads to strong fermion-number–nonconservation in dyon–fermion interaction.
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We also develop a suitable approximation for calculating some fermion-number–
breaking matrix elements in the presence of a dyon.

It is well known that in (V-A) theories the divergence of the (euclidean)
fermionic current is anomalous (Adleret al., 1969; Bell and Jackiw, 1969),

∂µJF
µ = constSP Fµν F̃µν = constEa Ha,

so that the fermion number

NF =
∫

JF
0 d3x

is not conserved in the external field with a nonzero winding numberq, where

q = − 1

32π2
εµνλρ

∫
SP FµνFλρ d4x. (1)

In the vacuum sector this effect is associated with instantons (Belavinet al.,
1975; Karasnikovet al., 1978; Peccei and Quinn, 1977; ’t Hooft, 1976a,b) and the
fermion-number–breaking amplitudes are supressed by the factor exp(−const/e2)
as well as by negative powers of the vacuum expectation value of the Higgs field
(’t Hooft, 1976a,b). The first supression results from the large values of action for
the configurations withq 6= 0, while the second one results from the small value
of the instanton size, which is cut off at the Compton length of the massive vector
boson.

Since in the presence of non-Abelian dyons there exist a nonzero classical,
electromagnetic field,H cl 6= 0 andEcl 6= 0 could give rise to the strong chirality
breaking in quantum chromodynamics (Blaeret al., 1991). The emission of light
charged fermions from a Julia–Zee dyon was analyzed by Blaeret al. (1991);
even for the case of massless fermions, this emission process violated chirality
and provides a simple illustration of the axial anomaly. In the fermion-number–
breaking amplitude there is no supression factor expected. One expects the anoma-
lous fermion-number–breaking in the presence of dyons to be strong, presumably
O(1). This effect can have far-reaching consequences, the most interesting one
being the strong baryon-number–nonconservation in fermion–dyon interactions
in grand unified theories (Rubakov, 1981b,c).

From the above arguments it is clear that the actual calculation of Green
functions with fermion-number breaking in the presence of a dyon will be rather
nonstandard. The effect is neither perturbative (theψ̄ψA vertex conserves the
fermion number) nor quasiclassical (since the factor exp(const/e2) does not ap-
pear). This difficulty is inherent in the Schwinger model (Schwinger, 1962), where
an exact solution (either operator (Krasnikovet al., 1980a,b; Velo, 1967) or func-
tional (Schwinger, 1962)) is needed to investigate the chirality and fermion-number
breaking (Krasnikovet al., 1980a,b; Lowenstein and Swieca, 1971; Nielsen and
Schroer, 1977a,b; Rothe and Swieca, 1977, 1979; Schroer, 1978). Since we are
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unable to obtain an exact solution of the spontaneous, broken four-dimensional
gauge theory, we are faced with the problem of developing a suitable zeroth-
order approximation. However, the natural approximation does exist if we restrict
ourselves to the dynamics of spherically symmetric fermions. Within this ap-
proximation one assumes the relevent gauge field configurations to be spherically
symmetric and neglects the contribution of fermions with nonzero angular momen-
tum to the fermionic determinant. Under these assumptions the problem becomes
effectively two-dimensional and one can find an exact solution that is quite sim-
ilar to the solution of the Schwinger model. The main part of the present paper
is devoted to the description and solution of this approximation and to estimate
corrections. Within this approximation it becomes possible to confirm the heuristic
argument of Section. 3 and find thee2 dependence of fermion-number–breaking
matrix elements in the presence of a dyon.

2. GENERALIZED FIELD AND ANGULAR MOMENTUM
ASSOCIATED WITH EXTENDED DYONS

Generalized fields associated with dyons of nonzero mass can be described
only by a non-Abelian gauge theory consisting of usual four-space (external) and
the n-dimensional internal group space. In such a theory, the field hasn-fold
internal multiplicity and the multiplets of gauge field transform as a basis of adjoint
representation ofn-dimensional non-Abelian gauge symmetry group. In order to
preserve the invariance of generalized field equations of motion for dyons under
the local non-Abelian gauge transformations

ψ → ψ ′ = S−1ψ, (2.1)

with S a local group element ofSU(2), a generalized potentialEVµ is introduced,
and derivatives ofψ are identified as covariant derivatives

E∇µ = (E∂µ − iq∗ EVµ×), (2.2)

where the vector sign→ and cross product× are denoted in internal group space,
µ = 0, 1, 2, 3, and are indices representing external degrees of freedom and the
componentVa

µ of EVµ in the internal space is a generalized four-potential given by

Va
µ = Aa

µ − i Ba
µ, (2.3)

with Aa
µ andBa

µ as electric and magnetic four-potentials associated with the dyons
carrying the generalized charge

q = e− ig (2.4)

in terms of electric and magnetic chargese and g respectively. It has already
been shown (Rajputet al., 1983) that for the fields associated with a massless
dyon, the additional potential (Bµ) does not lead to an increase in the number of
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independent variables describing the fields, and the introduction of this potential
is actually compensated by an enlargement of the group of gauge transformations.
In non-Abelian gauge theory of massive dyons,EVµ may be treated as a 2× 2
Hermitian matrix and the generalized field tensor may be written as

EGµν = EVµ,ν − EVµ,ν + iq∗[ EVµ, EVν ]. (2.5)

For extended dyons, it is possible (Wu and Yang, 1975) to divide the space–time
manifold into two overlapping regions R1 and R2 such andBµ vanishes in R1 and
Aµ vanishes in R2.

In the internal two-dimensional complex space introduced at each point
of Minkowski space–time, the charged field described bySU(2) is replaced by
expbi3O(x)cψ in SU(2)×U (1), where3O(x) is a phase factor. Then the basic
spinors of this internal space are acted upon by the following elementSof SU(3):

ES(x) = S(x) expb−i3O(x)c (2.6)

whereS(x) is a local group element ofSU(2) defined by Eq. (2.1). Under this
gauge transformation the 2× 2 matrix potentialEVµ and the matrix field tensorEGµν
transform in the following manner:

EVµ =ES−1 EVµ ES− ES−1E∂µ ES,

and

EGµν = ES−1 EGµν
ES, (2.7)

respectively. Instead of matricesEVµ and EGµν , we may define the gauge potential
V a
µ and the gauge field strengthGa

µν as follows:

EVµ − Va
µ
ETa,

and

EGµν = Ga
µν
ETa, (2.8)

where the repeated indices forSU(2) group are summed over 1, 2, and 3 (internal
degrees of freedom) and the matricesETa, describing the infinitesimal generators
of the groupSU(2), satisfy the commutation relation

(Ta, Tb) = i εabcTc, (2.9)

with εabc as the structure constants of the internal group.
Then Eq. (2.5) may be written as

Ga
µν ≡ ∂νVa

µ + ∂µVa
ν + q∗εabcVµbVνc, (2.10)

which gives the relationship between the gauge potentialVa
µ and the non-Abelian

gauge field tensorGa
µν . The covariant derivative of this field tensor may then be
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written as

∇νGa
µν = ∂νGa

µν + iq∗εabcVν
b Gµνc = Ja

µ , (2.11)

where

Ja
µ − Ja

µ + iq∗εabcVν
b Gµνc, (2.11a)

with

Ja
µ − ∂νGa

µν − j a
µ − ika

µ, (2.12)

representing the generalized linear (Abelian) electric and magnetic four-currents
j a
µ andka

µ associated with the dyon. The non-Abelian field in Eq. (2.11) is Lorentz-
covariant and reduces to the field equations derived earlier (Bhakuni and Rajput,
1982) in the Abelian limit when the structure constantεabc vanishes. The Nothe-
rian currentj a

µ given by Eq. (2.12) is manifestly conserved while the generalized
non-Abelian current given by Eq. (2.11a) is not so but it satisfies the following
generalized conservation law (i.e. gauge covariance):

E∇µ · EJµ = 0, (2.13)

where the ordinary derivative is replaced by covariant derivative.
In non-Abelian gauge theory the local gauge transformations of generalized

potential may be generalized into the following form:

EV′µ→ EVµ +∇µ E3q(x), (2.14)

i.e.

EV′µ→ EVµ + ∂µ E3q(x)+ iq∗[ EVµ × E3q(x)]

where the gauge termE3q(x) is given by the following equations in terms of electric
and magnetic gauge constituents:

E3q(x) = E3e(x)− i E3g(x). (2.15)

These results led to the following gauge changes in the generalized fields and
currents for the invariance of field equations in non-Abelian gauge theory

EGµν = iq∗[ EGµν × E3q(x)],

and

EJµ = iq∗[ EJµ × E3q(x)], (2.16)

which also shows that the generalized particle current, though not conserved in
non-Abelian theory, is gauge-covariant and subsequently the field equations (2.11)
are invariant to a nontrivial local gauge group. Substituting these gauge changes
into Eq. (2.11a), one may readily realize that the Notherian currentjµ receives a
contribution from gauge fields and hence it is not gauge-covariant.
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Suitable Lagrangian density yielding field Eq. (2.11) can be written in the
following form:

L = −1

4
gµρgνρ EG∗µν · EGρσ + 1

2
gµν EV∗µ · EJν −

1

2
gµν E∇µ(φ) · E∇ν(φ)− ηV(φ),

(2.17)

∇µφa = ∂µφa + q∗εabcVb
µφ

c, (2.17a)

and

V(φ) = 1

4
(φ2φa)2− 1

2
ν2(φaφa)

(2.17b)
ν2 = µ2/η,

whereν2− 〈φ〉2 determines the vacuum expectation value of the triplet Higgs field
φa. This Lagrangian density leads to the following form of energy–momentum
tensor for generalized system of dyons in non-Abelian theory

Tµ
ν = −

{
gµαgρβ EG∗αβ · EGνρ − gµρ EV∗ν · EJρ

− 1

4
δµν gραgαβ EG∗αβ · EGρσ + 1

2
δµν gρσ EV∗ρ · EJσ

}
−
{

Gµρ E∇∗ρ (φ) · (φ)− 1

2
δµν Gµσ∇∗ρ (φ)∇σ (φ)− δµν ηV(φ)

}
(2.18)

from which one may define the expressions for the Hamiltonian and momentum
of the systems. It may readily be shown that this Lagrangian density is invariant
under the nontrivial local gauge transformation (2.14) of the generalized potential,
provided that the local gauge changes in the generalized field and current are
given by Eq. (2.16). Lagrangian density given by Eq. (2.17) leads to the field
equation (2.11) only in the region where the current contribution due to Higgs
fields is negligible (i.e. Yang–Mills field obeys the free field equation). Let us
consider the region in which Higgs fields contribute nonnegligible source current
(i.e. the dyonic core) and assume the absence of Noetherian current defined by
Eq. (2.12) in this region such that the second term of the Lagrangian density (2.17)
(i.e. the interaction of generalized potential with generalized current) vanishes.
Then the Lagrangian density (2.17) leads to the following field equations:

∇νGa
µν = iq∗εabcφb∇µφc, (2.19)

with

Ja
µ = iq∗εabcVν

b Gµνc,
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and

∇µ∇µφa = −µ2φa + λ(φaφβ)φa. (2.20)

Equations (2.19) and (2.20) lead to the following relationship between the gener-
alized field and potential of a dyon and the Higgs field

( E∇µ Eφ)× Eφ − Vν × EGµν. (2.21)

Under these conditions in the dyonic core we find that Eq. (2.18) leads to

∂µTµ
ν = 0. (2.22)

This gives the conservation of stress energy tensor inside the dyonic core. Using
this conservation law one can compute (Joshunaet al., 1978) the time rate of
change of four-momentum, i.e. the force exerted on the core at any instant of time.
In the static limit, when all time derivatives are zero, the field equations (2.19) and
(2.20) take the following form:{

∂ j Ga
µj + iq∗εabcV j

b Gµjc = iq∗εabc∇µφbφc

∂ j∇ jφ
aiq∗εabcVµb∇µφc = µ2φa + λ(φbφb)φa.

(2.23)

Considering the values of fields satisfying these equations as an initial data set, the
time evolution of the fields is determined by the field equations (2.19) and (2.20)
at the dyonic core such that the conservation equation (2.22) is valid.

It has been demonstrated in our earlier paper (Rajputet al., 1983) that an
Abelian dyon moving in the generalized field of another dyon carries a residual an-
gular momentum (field contribution) besides its orbital and spin angular momenta.
Consequently there exists a chirality-dependent multiplicity in the eigenvalues of
this angular momentum operator. Non-Abelian gauge field is self-interacting one
and carries the charge even in the absence of external current sources, as shown
by Eq. (2.19). Because of the interaction with this charged field, the non-Abelian
dyon carries the residual angular momentaJresbesides its orbital, spin, and isospin
angular momenta. To compute this contribution toward the angular momentum of
the dyon, let us find the expressions on generalized electric and magnetic fields
using the following ansatz of Julia and Zee:

Va
i (r )− εai j (r̂ ) j [K (r )− 1]

1

q∗r
, (2.24)

Va
o (r )− εai j (r̂ )a J(r )

1

q∗r
, (2.25)

where i and o indicate space and time directions,a is an SU(2) vector index
(internal direction) and

r̂ = r

r
.
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In the static gauge, generalized electric and magnetic fields corresponding to the
generalized field tensor given by (2.10) may be written as

Ea
k = Ga

ok = ∂kVa
o

∣∣ q∗εabcVkbVoc, (2.26)

and

Ba
k = εi jk Ga

i j = ∂ j V
a
i − ∂i V

a
j + q∗εabcVjbVic (i 6= j 6= k), (2.27)

showing that these generalized fields are non-Abelian in nature having external as
well as internal components. In the Abelian limit these fields reduce to the usual
electromagnetic fields in the simple static gauge. Using the values ofVa

i (r ) and
Va

o (r ) given by Eqs. (2.24) and (2.25) into (2.26) and (2.27), we get the following
expressions for the generalized electric and magnetic fields associated with the
non-Abelian dyon:

Ea
j =

(r̂ )

q∗
∂

∂r j

(
J(r )

r

)
+ 2

q∗

{
[K (r )− 1]J(r )

r 2

}
(r̂ )a(r̂ ) j (2.28)

Ba
j =

(r̂ ) j

q∗
∂

∂ra

[
K (r )− 1

r

]
− r b

q∗
∂

∂r b

[
K (r )− 1

r

]
(r̂ )a(r̂ ) j

and

− (r̂ )a(r̂ )b

q∗

[
K (r )− 1

r

]2

. (2.29)

The external fields may be obtained by takingr > r 0, wherer0 is the radius of
dyonic core. For larger the functionK (r )→ 0 and

J(r ) = b+ Mr, (2.30)

whereb andM are positive constants having the dimensions of charge and mass,
respectively. Then the external electric and magnetic fields reduce to the following
forms in the asymptotic limit:

Ea
j =

3b

q∗r 2
(r̂ )a(r̂ ) j − 2M

q∗r
(r̂ )a(r̂ ) j , (2.31)

Ba
j =
−(r̂ ) j (r̂ )a

q∗
1

r 2
. (2.32)

For vanishingM , these fields correspond to pointlike, massless Abelian dyon with
electric charge 3b/q∗, and the magnetic charge 1/q∗.

The internal fields may be obtained by takingr < r 0 and the following values
of the functionsJ(r ) andK (r ) in the limit r → 0:

J(r )→ 0 K (r )→ 1. (2.33)
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Then the internal fields at vanishingly small distance from the dyonic centre may
be written as follows from Eqs. (2.28) and (2.29):

Ea
j =

(r̂ )a

rq∗
∂

∂r j
(J(r )) Ba

j =
(r̂ ) j

rq∗
∂K (r )

∂ra
. (2.34)

Since the derivatives of the functionsJ(r ) andK (r ) exist for small values ofr , these
fields are well defined near the dyonic centre. However, exactly at the dyonic centre,
these fields blow up and hence there is no well-definedU (1) charge symmetry at
the dyonic centre. Similar conclusions have been derived earlier (Yoneya, 1984)
by a different approach. At a finite distancer < r 0 in the dyonic core we may
choose

J(r )− C1r
2 K (r )− C2r

2+ 1,

whereC1 andC2 are constants. Substituting these values in Eqs. (2.28) and (2.29)
we get the following expressions for the internal fields:

Ea
j =

2C1(r̂ )a(r̂ ) j

q∗
+ 2C1C2r 2

q∗
(r̂ )a(r̂ ) j , (2.35)

and

Ba
j =

2C2

q∗
(r̂ )a(r̂ ) j − C2

2(r̂ )a(r̂ ) j r 2

q∗
. (2.36)

For vanishingly smallr , these equations reduce to Eq. (2.34) withJ(r ) andK (r )
given by Eq. (2.35). The angular-momentum operator of the non-Abelian dyon
may be obtained as follows by using Eq. (2.18):

Ji = εi jk

∫
d3r r j Tk

0 . (2.37)

The residual part of the angular momentum (i.e. field contribution) may be obtained
in the region outside (external) as well as inside (internal) of the dyonic core by
identifying the field (2.29) as external field forr > r 0 with internal position vector
and unit vector asExaandx̂a and as internal field forr < r 0 with external position
vector and unit vector asr andr̂ j . Then we get

Jext = r̂ ⊗ (Ea ⊗ Ba),

and

EJ int = {Ex × ( EE j × EB j )}, (2.38)

where the symbol× denotes cross product in the internal space and⊗ is the cross
product in the external space. Substituting the expressions (2.28) and (2.29) in
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these equations we get

Jext = r × (r̂ E× r̂ B)

(q∗)2

{−(K (r )− 1)J(r )

r 2
[3x̂a · r̂ E− xa]r · ∇

(
K (r )− 1

r

)
× (r̂ a · r̂ B)− (K (r )− 1)3J(r )

r 4
[(3x̂a · r̂ E)xa − 1]+ (K (r )− 1)J(r )

r 2

× [(3x̂a · r̂ E− xa)]∇a

(
K (r )− 1

r

)}
+ r

[∇ ( J(r )
r

)× r̂ B
]

(q∗)2

×
{−(K (r )− 1)2

r 2
− x̂a

a

(
r · ∇

(
K (r )− 1

1

))
(x̂a · r̂ B)

+ x̂a∇a

(
K − 1

r

)}
(2.39)

EJ int = Ex × (ExE × ExB)

(q∗)2

{
(−K (r )− 1)J(r )

r 2
[3x̂E · r̂ j − r̂ j ]Ex · E∇

(
K (r )− 1

r

)
× (x̂B · r̂ j )−

(
(K (r )− 1)J(r )

r 1

)
[(3x̂E · r̂ j )r

j − 1]

}

+ Ex ×
(ExE ×∇

( K (r )−1
r

))
(q∗)2

{
(K (r )− 1)J(r )

r 2
[3(x̂E · r̂ j )r

j − 1]

+ r j
∂

∂r j
(J(r )/r )

}
, (2.40)

wherer̂ E andr̂ B are unit vectors in the direction of electric and magnetic fields.
Substituting the limiting values ofJ(r ) and K (r ) given by Eq. (2.33) into

Eq. (2.37), we get the following expression for the components of the internal
angular momentum operator

Ja
i =

1

r

∂ J(r )

∂r j

∂K (r )

∂xa
, (2.41)

which blows up atr → 0. In other words, if the core radius is assumed to be
zero, then the density of the radial angular momentum is infinite. It corresponds
to the infinite coulomb energy of the charge on the core. Thus, when a fermion
scatters from the core of the dyon and changes its charge, the lost charge must
be deposited on the dyon core (in order to maintain overall charge conservation)
and the core must neutralize itself by some sort of pair creation process. This
pair creation effect leads to baryon-number–nonconservation in the presence of
non-Abelian dyon. The dyonic core has remarkable abilities to absorb baryon and
lepton numbers with no loss in the energy.
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3. FREMION-NUMBER BREAKING IN THE PRESENCE OF DYON

We consider anSU(2) gauge theory with a Higgs tripleϕa and two left-handed
fermionic doubletsψ (s)(s= 1, 2 is the “flavor” index) throughout this paper.
We always use a euclidean formulation of the field theory, so the action func-
tional is

S= SA,ϕ + Sψ (3.1)

SA,ϕ =
∫

dt

{∫
d3x

[
− 1

2e2
SP F2

µν +
1

4
SP(Dµϕ)2

+ λ(SPϕ
2− 2c2)2

]
− Mdyon

}
= bosonic part (including mass of dyon) (3.1a)

SA,ψ = −i
∫

d3 x dt
∑
s=1,2

ψ̄
(s)
γ
µ

L (∂µ + Aµ)ψ (s)

= fermionic part of the action. (3.1b)

Lagrangian density can be written as

L =
[
− 1

2e2
SP F2

µν +
1

2
SP(Dµϕ)2+ λ(SPϕ

2− 2c2)2

]
− Mdyon

where

Mdyon= 1

2

∫
gµν EV∗µ · Jµ d3x

Since we are interested in the dyon sector, it is convenient to normalize the zero-
point energy so that the dyon energy is equal to zero,

Edyon= 0. (3.2)

According to this prescription, the last term (the dyon mass) on the r.h.s. of (3.1a)
is added to the standard bosonic part of the action of the Georgi–GlashowSU(2)
model. The “left-handedγ matrices” are defined by the following relations,

γ µ
1− γ 5

2
=
(

0 γ
µ

L
0 0

)
or, explicitly,

γ 0
L = 1 γ i

L = iσi ,

σi being Pauli matrices. The matrix notation forVµ andϕ,

Vµ = e

2i
Va
µτ

a ϕ = ϕaτ a,

is used in (3.1a) and (3.1b).
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The Higgs fieldϕ develops a nonzero vacuum expectation value, so that in the
unitary gauge

〈ϕ〉vac− cτ3

and only the third componentV3
µ (photon) remains massless. In this gauge the

fermionic sector consists of four massless left-handed fermionsψ
(s)
− ≡ ψ (s)

1 and
ψ

(s)
+ ≡ ψ (s)

2 carrying the electromagnetic charge [− 1
2e] and [+ 1

2e], respectively
(the lower index 1, 2 is theSU(2) group one). The gauge-invariant current ofsth
fermion,

J(s)
µ = ψ̄ (s)

γ
µ

L ψ
(s),

has the anomalous divergences

∂µJ(s)
µ =

1

32π2
εµνλρSP FµνFλρ. (3.3)

The Julia–Zee dyon solution is

Va
i = εai j (r̂ ) j [K (r )− 1]

|q|r ,

Va
o = εai j (r̂ )a J(r )

|q|r , (3.4)

ϕa = (r̂ )a H (r )/|q|r ,
wherei ando indicates space and time directions,a is anSU(2) vector index, (i.e.
internal direction) and

r̂ = Er
r

,

under the boundary conditions

H (0)= J(0)= 0= K (0)− 1= 0 H (∞) = K (∞) = 0. (3.5)

H (r ) andK (r ) are exponentially small atr À c−1/q, r À c−1/λ. Throughout this
paper we are primarily interested in the dynamical properties of fermions far from
the dyon centre, i.e. we assume the limit

c→∞ K → 0 (3.6)

to be taken whenever possible (otherwise the functionK (r ) will be explicitly
indicated). Note that in this limit dyon size vanishes

rD → 0. (3.7)

Throughout this paper we treat the configuration (3.3) as a classical background
one, though we do not assume the perturbations to be small. Thus the generating
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functional for the fermionic Green functions in the presence of a dyon

Zdyon[ξ̄ , ξ ] =
〈
exp

[∫
(ξ̄ψ + ψ̄ξ ) d4x

]〉dyon

(we omit the flavor indexs whenever possible as well as the summation overs) is
represented by the functional integral

Zdyon[ξ̄ , ξ ] =
∫

dVµ dϕ exp[−SV,ϕ + gauge fixing term+ ghost term]

×
∫ 2∏

s=1

dψ (s) dψ̄ (s) exp

[
−SV,ψ +

∫
(ξ̄ψ + ψ̄ξ )d4x

]
(3.8)

with the following boundary conditions:

Vµ(x, t)→ Va
µ (x, t)

ϕ(x, t)→ ϕa(x) t →±∞. (3.9)

Equation (3.3) implies (’t Hooft, 1976a) that the change of thesth flavor is equal
up to the winding number of the gauge field (1),

1N(s) = −q.

We first show that there exist configurations of the bosonic fields, obeying the
boundary conditions (3.9) and havingq = −1 and that, as opposed to the vacuum
sector, in the dyon sector the actionSV,ϕ , for these configurations can be arbitrarily
close to zero. This means that the supression factor exp(−const/e2) does not appear
in fermion-number–nonconerving matrix element. Consider the configuration

VO = τ anaa0(r, t)/ i ,

Vi = τ anani a1(r, t)/ i + Va
i , (3.10)

ϕ = ϕa,

wherea0(r, t) anda1(r, t) obey

a0(r,±∞)− a1(r,±∞)− 0. (3.11)

The action functional for this configuration reads

SV,ϕ = 4π

e2

∫ ∞
0

dr
∫ ∞
−∞

dt
[
(∂ta1− ∂r a0)2r 2+ 2K 2

(
a2

0 + a2
1

)]
(3.12)

and the winding number (1) reads

q = 1

π

∫ ∞
0

dr
∫ +∞
−∞

dt{∂r [a0(1 K )2]∂t [a1(1 K )2]} (3.13)
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i.e., in virtue of (3.5) and (3.11),

q = 1

π
lim

∫ +∞
−∞

dt a0(r, t). (3.14)

Note that the last expression can be obtained from (3.13) in the limit (3.6) and
(3.7) only if a0(r, t) satisfies

a0(r = 0, t) = 0. (3.15)

An explicit example of a configuration obeying (3.11) and (3.15) and having
q = −1 is

a0(ρ/r, t) = −∂rρ(r, t),

a0(ρ/r, t) = −∂tρ(r, t), (3.16)

with

ρ(r, t)− 1

2
log

[
µ2

1(r 2+ t2)+ 1
]− 1

2ε

[
µ2

1(r 2+ t2)+ 1
]−ε

, (3.17)

whereµ1 is some mass scale andε is a positive number. The value of action for
the fields (3.10) and (3.16) is

SV,ϕ = 5π2

3e2
ε(1+ O(ε)+ O(µ1/c))

and can be arbitrarily small for smallε andµ1, Q.E.D.
In the vacuum sector, fermion-number–breaking matrix elements are also

suppressed by negative powers ofc (’t Hooft, 1976b). This suppression occurs
because the zero fermion modes far from the instanton are proportional toλ

−3/2
inst ,

and the instanton sizeλinst is bounded from above byc−1. Thus, it is instructive
to investigate the zero fermion modes in the external field (3.10) in order to find
their c dependence. For the sake of convenience we consider the fieldsa0 anda1

of the form (3.16). Since the external field is spherically symmetric, it is natural
to choose a spherically symmetric anstaz for the zero modes. A most general
spherically symmetric fermionic field has the following form:

ψ
(0)
αl (x, t) = (√8πr

)−1
exp

(∫ r

∞
K (r ′)

dr ′

r ′

)
χαl (x, t) (3.18)

whereα = 1, 2 andl = 1, 2 are Lorentz and gauge group indices respectively, and

χαl (x, t) = εαlχ1(r, t)− i τ a
αβεβl naχ2(r, t). (3.19)

Introducing the compact notation

χ =
(
χ1

χ2

)
,
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we obtain the following equation for the zero mode

χ (0) :

[
(∂t + i τ2∂rρ)+ i τ2(∂r − i τ2∂tρ)+ K

r
(τ1+ i τ2)

]
χ (0) = 0 (3.20)

In order that the solution be nonsingular atr = 0, one should impose the boundary
condition

(τ1+ i τ2)χ (0)(r − 0)− 0 (3.21)

The solution of Eqs. (3.20) and (3.21) is

χ (0)(r, t) = N exp{−ρ(r, t)}
(

1

0

)
, (3.22)

whereN is a normalization factor. Since the zero modes (3.18) and (3.22) is square-
integrable nearx = 0 in the limits (3.6) and (3.7), the factorN is independent of
c far from the dyon center. This implies that the fermion-number–breaking matrix
elements in the presence of a dyon are not suppressed by negative powers ofc.
Note that, as is seen from (3.17). The zero mode has the following asymptotic
behaviour asr 2+ t2→∞,

ψ ≈ r−1(r 2+ t2)−1/2,

so that its norm
∫
ψ+ψ d4x is logarithmically divergent in the infrared region. This

fact is in complete analogy to the Schwinger model (Krasnikovet al., 1980a,b;
Rothe and Swieca, 1979; Schroer, 1978).

The nature of the configuration (3.10) is most transparent in the unitary gauge
of Arafuneet al.(1975) and Englert and Windey (1976). Performing the transfor-
mation to this gauge, we obtain in the limits (3.6) and (3.7)

V (u)
o =

1

i
τ3a0,

V (u)
i =

1

i
τ3a1+ VD

i

τ3q

2i
, (3.23)

φ(u) = cτ3,

whereVD
i is the Dirac expression for the vector-potential of the dyon carrying.

From (3.23) it is clear that the configuration (3.10) is purely electromagnetic.
Moreover, the electromagnetic field of the configuration is just the dyon one,
while the electric fieldEi = (i /e)SP K0i τ3 is

Ei = 4ni

e
(∂0a1− ∂1a0)

and is directed along the electromagnetic field, so thatHE 6= 0, EH 6= 0 (pro-
duced by dyon)(c.f. Introduction section); So this argument implies strong fermion-
number–breaking in the presence of dyon.
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4. MASSLESS LEFT-HANDED FERMION
IN THE FIELD OF A DYON

This section is devoted to the study of left-handed massless fermion in the
external field (3.10), in the limits (3.6) and (3.7). It is convenient to introduce the
operator of total angular momentum (Dereliet al., 1976):

Mi = −i εi jk x j ∂k + 1

2
σi + 1

2
τi . (4.1)

this operator commutes with Dirac operatorD,

D = γ µL (∂µ + Vµ),

as well as with the operatorsτn andσn. The angular part of the Dirac operator,

DÄ ≡ ir σk(δkl − nknl )(∂l + Vl )− iσknk,

commutes withτn and anticommutes withσn,

[σi ni , DÄ]+ = 0. (4.2)

It is a matter of straightforward calculation to verify the following identity:

D2
Ä = M2. (4.3)

There exist two eigenfunctions ofM with zero eigenvalue, namelyεαl andτ a
αβεβl nα

(α and l are the Lorentz and gauge group indices respectively), and 4(2J + 1)
eigenfunctionsψJMδν of M2, which can be chosen to satisfy

M2ψJMδν = J(J + 1)ψJMδν J = 1, 2. . . ,

M3ψJMδν = MψJMδν M = 0,±1, . . . ,±J,
(4.4)

τnψJMδν = δψJMδν δ = ±1,

σnψJMδν = vψJMδν ν = ±1.

the functionψJMδv(J 6= 0) from a set of functions, which is complete in the sub-
space withJ 6= 0 and orthonormal on a sphere. Thus, the fermion fieldψ can be
decomposed in the following way:

ψ(x, t) = ψ (0)(x, t)+ 1

r

∑
JMδ

∑
ν

uJMδ
ν (r, t)ψJMδν(2,8), (4.5)

whereψ (0)(x, t) is given by (3.18) and (3.19) (but the fieldχ need not satisfy the
Dirac equation). It is convenient to introduce the compact notation

uJMδ = 1− i τ√
2

(
uJMδ
+1

uJMδ
−1

)
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and to rewrite the fermionic part of the action (3.1b) in the following form:

SV,ψ = SJ=0+
∑
J 6=0

∑
M,δ

SJMδ, (4.6)

where

SJ=0 =
∫

dr dtχ̄DJ=0χ , (4.7)

SSMδ = −i
∫

dr dt u−JMδDJδu
JMδ, (4.8)

DJ−0 = ∂t − i τ2a0+ i τ2(∂r − i τ2a1), (4.9)

DJ,δ = ∂t − i δa0− i τ2(∂r − i δa1)+
√

J(J + 1)

r
τ1 (4.10)

(the limit (3.6) and (3.7) is assumed).
The form of the vector potential (3.10), the decomposition (4.5) and the

actionsSJ=0 andSJMδ are invariant under the following transformation:

χ → ei τ2βχ ,

uJMδ → ei δβuJMδ, (4.11)

a0→ a0+ ∂tβ a1→ a1+ ∂tβ,

whereβ(r, t) is some real function. The transformation (4.11) is a special case of
gauge transformation, the gauge function

g(x, t) = expbi τanaβ(r, t)c (4.12)

being spherically symmetric. For this gauge function to be nonsingular atr = 0,
the functionβ should vanish at the origin,

β(r = 0, t) = 0. (4.13)

According to the decomposition (4.5), the functional measure in (3.8) can be
rewritten in the following form:

2∏
s=l

∏
x,t

dψ (s)dψ̄ (s) =
∏
r,t

2∏
s=l

[
dχ (s)dψ̄ (s)

∏
JMδ

du(s)JMδdū(s)JMδ

]
(4.14)

Thus, the functional integral over fermions in the external field (3.10) reduces to an
infinite product of functional integrals over the two-dimensional fermionic fields
χ (r, t) and uJMδ (r, t) (defined on a half-plane), the relevent action functionals
being given by (4.7) and (4.8).

We begin the discussion of the above action functional by deriving the Green
function of zero-angular-momentum fermions. Since the Dirac operator (4.9) in
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the limit of a pointlike dyon is ill defined atr = 0 [ ], we consider the full operator
for the fieldχ (cf.(3.20)),

Dfull
J=0− ∂t − i τ2a0+ i τ2(∂r − i τ2a1)+ F

r
(τ1− i τ2). (4.15)

the Green function G (r t ; r ′t ′) obeys the following equation:

Dfull
J=0G(r t ; r ′t ′) = δ(r − r ′)δ(t − t ′). (4.16)

To derive the boundary condition forG, we assumme for simplicity the function
F to be step function,

F(r ) = θ (r − rD)

whererD is the dyon radius. At the end of our derivation we shall take the limit (3.7).
We also assume that the functionsa0 anda1 are finite and smooth atr = 0. The
standard arguments of the theory of differential equations leads to the following
behaviour of G (r t ; r ′t ′) near the originr = 0:

G1(r t ; r ′t ′) = 0(1),
G2(r t ; r ′t ′) = 0(r ),

}
(4.17)

whereG1,2= 16=τ3

2 G.
From Eqs. (4.15) and (4.16) it follows that G (r t ; r ′t ′) is continuous atr = rD,

and from (4.17) in the limit (3.7) we obtain the following boundary condition:

(1− τ3)G(0t ; r ′t ′) = 0. (4.18)

Note that in terms of the fieldχ (r, t) this boundary condition corresponds to
(3.21). Thus, in the limits (3.6) and (3.7) the Green function of the fieldχ obeys
the equation

DJ=0G(r t ; r ′t ′) = 0. (4.19)

Vo = 0 (4.20)

or

a0 = 0 (4.21)

and consider the functiona1(r, t) obeying the boundary condition (3.11). In this
case G(r t ; r ′t ′) can be obtained in the closed form, namely,

G(r t ; r ′t ′) = exp[−σ (r, t)+ σ (r ′, t ′)+ i τ2γ (r, t)]G0(r t ; r ′t ′) exp[i τ2γ (r ′, t ′)],
(4.22)

where

σ (r, t) =
∫ ∞

0
dr ′′

∫ ∞
−∞

dr ′′[D(r − r ′′, t − t ′′)+ D(r + r ′′, t − t ′′)]

× ∂t ′′a1(r ′′, t ′′), (4.23)
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γ (r, t) −
∫ t

−∞
∂rσ (r, t ′′) dt′′. (4.24)

Here D(r, t) is the propagator of the two-dimensional massless scalar field (the
inverse two-dimensional Laplacian),

D(r, t) = 1

4π
logµ2

2(r 2+ t2) (4.25)

(µ2 is an arbitrary mass scale (Klaiber, 1968; Wightman, 1966), andG0 is the
solution of the “free” equation

(∂t + i τ2∂r )G0(r t ; r ′t ′) = δ(r − r ′)δ(t − t ′),

obeying the boundary condition

(1− τ3)G0(0t ; r ′t ′) = 0.

Explicitly

G0(r t ; r ′t ′) = (∂t − i τ2∂r )[D(r − r ′, t − t ′)+ D(r + r ′, t − t ′)τ3]

= 1

2π

[
(t − t ′)− i τ2(r − r ′)
(r − r ′)2+ (t − t ′)2

+ (t − t ′)− i τ2(r + r ′)
(r + r ′)2+ (t − t ′)2

]
. (4.26)

Note that the definitions (4.23) and (4.24) imply

∂rσ (0, t) = 0 γ (0, t) = 0. (4.27)

Now we turn to the discussion of the action (4.8). In this case we cannot find
the exact Green function of the operatorDJ,δ, so we develop perturbation theory
arounda0 = a1 = 0. The free propagatorGJ corresponding to the action (4.8)
obeys the equation(

∂t − i τ2∂r + b(J)

r

)
GJ(r t ; r ′t ′) = δ(r − r ′)δ(t − t ′), (4.28)

where

b(J) =
√

J(J + 1).

It is straightforward to prove that the solution of (4.28) has the following form

GJ =


∂t<b2+b

(
∂r − b

r

)
<b2−b(

−∂r − b

r

)
<b2+b ∂t<b2−b

 , (4.29)
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where the function<k(r t ; r ′t ′) obeys the equation(
∂2

t + ∂2
r +

k

r 2

)
<k(r t ; r ′t ′) = δ(r − r ′)δ(t − t ′). (4.30)

Using the properties of the Legendre functionQm(z) listed in Appendixes A and
B, one can verify that the solution of (4.30) is

<k(r t ; r ′t ′) = − 1

2π
Qd(k)

[
1+ (r − r ′)2+ (t − t ′)2

2rr ′

]
, (4.31)

where

d(k) =
√

k+ 1

4
− 1

2
. (4.32)

The free propagator (4.29) vanishes as (r − r ′)2+ (t − t ′)2 tends to infinity as well
as atr = 0 (see Appendixes A and B).

To conclude this section we summarize the analogus properties of the left-
handed fermion in an external gauge field of the form

Ṽo = 1

i
τ3a0(r, t),

Ṽi = 1

i
τ3ni a1(r, t),

ϕ̃ = cτ3. (4.33)

This field is purely electromagnetic and differs from the unitary gauge configura-
tion (3.23) by the Dirac vector potentialV D

i . In this case the angular momentum
operator is the standard one,

M̃i − εi jk

∫
d3r r j Tk

0 +
1

2
σi , (4.34)

and the decomposition analogous to (4.5) reads

ψ(x, t) = 1

r

∑
r,k,δ

∑
ν

νn,k,δ
ν (r, t)ψ̃nkδν(2,8), (4.35)

whereψ̃nkδν and the eigen function of̃M2, M̃3, τ3 andσn with the eigenvalues

n− 1

2
(n = 1, 2,. . .), k

(
k = ±1

2
, . . . ,±

(
n− 1

2

))
, δ(δ = ±1),

andν(ν = ±1),

respectively. The fermionic action in the enternal field (4.33) can be rewritten
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asdcf.(4.6)e
SV,ψ =

∑
nkδ

S̃nkδ,

where

S̃nkδ = −i
∫

dr dtν̄nkδ(r, t)D̃n,δν
nkδ(r, t), (4.36)

and

D̃n,δ = ∂t − i δa0− i τ2(∂r − i δa1)+ n

r
τ1.

The free operator̃Gn corresponding to the action (4.36) can be found in the same
way asGJ .

G̃n =

 ∂t<n2+n

(
∂r − n

r

)
<n2−n(

−∂r − n

r

)
<n2+n ∂t<n2−n

 . (4.37)

5. THE ZEROTH-ORDER APPROXIMATION

We describe an approximation for evaluating matrix elements of zero-angular-
momentum fermionic fields in the presence of a dyon, i.e. the matrix element of
the following form:

W(r1t1, . . . , r ′Nt ′N) = 〈χ (r NtN), . . . , χ (r NtN)χ̄ (r ′1t ′1), . . . , χ̄ (r ′Nt ′N)〉dyon (5.1)

Using the representations (which are inverse to (4.5) and (3.18))

χ
(s)
1 = (8π )−1/2 r

∫
εαl9

(s)
αl (x, t) sin2 d2 d8

χ
(s)
2 = i (8π )−1/2 r

∫
εlβτ

a
βαna9

(s)
αl (x, t) sin2 d2 d8 (5.2)

one can relate the matrix elements (5.1) to the matrix elements of the initial fields
9 (s) in the presence of a dyon.

The functional integral representation (5.1) for the matrix elements (3.8) can
be rewritten in the following way:

W(r1t1, . . . , r ′Nt ′N) =
∫

dVµ dϕ exp[−SV,ϕ − Ŝ[V, ϕ; r1t1, . . . , r ′Nt ′N ]

+ gaugefixing terms+ ghost terms]
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where the fieldsVµ,ϕ obey the boundary conditions (3.9) and

e−ŝ =
∫ 2∏

s−1

d9̄(s)aψ (s)e−SV,ψχ (r1t1), . . . , χ (r ′Nt ′N).

We search for the minimum of the effective actionSV,ϕ + Ŝand assume that,
to the lowest order ine2 andc−1, the matrix element (5.1) is

W
(
r1t1, . . . , r ′Nt ′N

) = exp[−(SV,ϕ + Ŝ)min].

We also assume that the fieldsV andϕ realizing this minimum take the form
(3.10), where the fielda1(r, t) obeys the boundary condition (3.11) (we are still
proceeding in the temporal gauges (4.20) and (4.21)). Under the above assumptions
the fermionic contribution to the effective actionŜtakes a particularly simple form

Ŝ= −2
∑
J 6=0

∑
δ

(2J + 1) log Det[i D Jδ(a1)] − 2 log Det[i D J=0(a1)]

+
N∑

p=1

[σ (r p, tp)− σ (r ′p, t ′p)] − log

{
exp

[
N∑

p=1

iT (p)
2 γ (r p, tp)

+
N∑

p′=1

iT (p′)
2 γ (r ′p, t ′p)

]
W(O)(r1t1, . . . , r ′Nt ′N)

}
(5.3)

where the operatorsDJ=0 and DJ,δ are defined by (4.9) and (4.10),σ andγ are
defined by (4.23) and (4.24), andW(0)(r1t1, . . . , r ′Nt ′N) is the “free” (no interaction
with a1) matrix element (5.1), i.e. the Wick expansion of (3.1) with the pairing
(4.26). Equation (5.3) is a direct consequence of (4.5)–(4.7) and (4.22); the factor
2 in the first two terms on the r.h.s. of (5.3) comes from the summation over the
flavours, while the factor (2J + 1) in the first term of the r.h.s. of (5.3) comes from
the summation over the third component of angular momentum.

Now we make another assumption that will be justified in our forthcoming
paper. We assume that the first term on the r.h.s. of (5.3) is negligible. Since the
a1 dependences of the third the fourth terms in (5.3) are explicit, we only have to
evaluate the second term. This can be done in the same way as in the Schwinger
model (Schwinger, 1962), so we only sketch the derivation. It is convenient to
adopt the following unified notation. Byξι(ι = 0, 1) we denote the coordinates in
the (t, r ) half-plane:

ξ0 = t ξ1 = r, (5.4a)

so that

ξ2 ≡ ξιξι = r 2+ t2 d2ξ = dr dt. (5.4b)
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The variation of the second term on the r.h.s. of (5.3) with respect to the variation
of a1 is

δ(−2 log Deti D J=0) = −2
∫

d2ξ Sp G(ξ, ξ )δa1(ξ ). (5.5)

From the explicit expressions (4.22) and (4.26), it follows that the contribution
of the second (nonsingular) term on the r.h.s. of (4.26) vanishes. Using the point-
splitting regularization,

G(ξ, ξ ) = 1

2
lim[G(ξ/ε)+ G(ξ/− ε)],

G(ξ/ε) = exp

(
i
∫ ξ+ε

ξ

aι(ξ
′)dξ ′ι

)
G(ξ, ξ + ε),

which is invariant under the gauge transformation (4.11), we obtain

Sp G(ξ, ξ ) = − 1

π
∂tσ (r, t),

whereσ is defined by (4.23). From (5.5) we get

δ(−2 log Deti D J=0) = 2

π

∫
dr dt ∂tσ · δa1 = − 2

π

∫
σδ
[(
∂2

r + ∂2
t

)
σ
]
dr dt.

(5.6)

The last expression has been obtained by integration by parts with the use of (4.27)
(this is another way to understand the necessity of the boundary condition (4.27)).
Finaly, from (5.6) we find

2 log Deti D J=0 = − 1

π

∫
σ
(
∂2

r

∣∣ ∂2
t

)
σ dr dt (5.7)

In terms of the variableσ , the actionSV,ϕ can be rewritten as (see (3.12); we
still take the limits (3.6) and (3.7))

SV,ϕ = 4π

e2

∫
dr dt

[(
∂2

r + ∂2
t

)
σ
]2 · r 2 (5.8)

so the effective actionSV,ϕ + Ŝ, within our approximation, is at most quadratic in
σ [the last term in (5.3) is, in fact, linear inγ and hence inσ ] and the quadratic
part is the sum of (5.7) and (5.8),

S2(σ ) = SV,ϕ − 2 log Deti D J=0 = 1

2

∫
σ (r, t)Lr,tσ (r, t) dr dt, (5.9)

where

Lr,t = − 2

π

(
∂2

r + ∂2
t

)+ 8π

e2

(
∂2

r + ∂2
t

)
r 2
(
∂2

r + ∂2
t

)
(5.10)
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We conclude that, within our approximation, the matrix elements (5.1) are
equal to

W
(
r1t1, . . . , r ′Nt ′N) = exp

{
−
(

S2+
∫
σ j dr dt

)
min

}
×W0(r1t1, . . . , r ′Nt ′N

)
, (5.11)

where ∫
dr dt σ j =

N∑
p−1

[
σ (r p, tp)− σ (r ′p, t ′p)

]+ N∑
p−1

i τ (p)
2 γ (r p, tp)

+
N∑

p′=1

i τ (p′)
2 γ (r ′p, t ′p) (5.12)

is the linear term in (5.3). To find the explicit expression for the exponential in
(5.11), it is sufficient to determine the Green function℘(r t ; r ′t ′) of the operator
(5.10). This function obeys the following equation

Lrt℘(r t ; r ′t ′) = δ(r − r ′)δ(t − t ′). (5.13)

Since the function

σ (r, r | j )−−
∫
℘(r t ; r ′t ′) j (r ′, t ′)dr ′ dt′,

realizing the minimum ofS2+
∫

jσ , should obey the boundary condition (4.27),
the defining equation (5.13) should be supplemented by the following boundary
condition:

∂r℘(0t ; r ′t ′) = 0 (5.14)

As is clear from (4.30) and (A.15), the solution of (5.13) and (5.14) is

℘(r t ; r ′t ′) = 1

2
π
[
Re2/4π2(r t ; r ′t ′)− D(r − r ′, t − t ′)− D(r + r ′, t − t ′)

]
(5.15)

where the functionD is defined by (4.25). Equations (5.11), (5.12), and (5.15), are
sufficient to evaluate the matrix elements (5.1) within our approximation. Rather
than present explicit expressions that are somewhat complicated, we prefer to
describe the functional integral fit for these matrix elements. From (5.11), (5.12),
and (5.15) we find

W(r1t1, . . . , r ′Nt ′N) =
∫ ∏

r,t,s

dχ (s)
0 dχ̄ (s)

0 d6 dη × exp(−S6 − Sη − Sχ0)χ (r1, t1)

(5.16)
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where the fields6, η, andχ0 are defined on a half-plane{r ∈ (0,∞), t ∈ (−∞,
+∞)} and obey the boundary conditions

∂r6(0, t)− ∂r η(0, t)− (1− τ3)χ0(0, t)− 0.

The effective actions are

S6 = −1

2

∫
dr dt6

(
∂2

r + ∂2
t −

e2

4πr 2

)
6,

Sη = +1

2

∫
dr dt η

(
∂2

r + ∂2
t

)
η,

Sχ0 =
∫

dr dtχ̄0 DJ=0(a = 0)χ0,

with Dj−0 defined by (4.9), and

χ (s)(r, t) = exp

[
−σ̃ (r, t)+ i τ2

∫ t

−∞
∂r σ̃ (r, t ′) dt′

]
χ

(s)
0 ,

with

σ̃ (r, t)−
√

1

2
π [6(r, t)+ η(r, t)].

Note that the integrals (5.16) are Gaussian and the propagators of the fields6 and
η are

Re2/4π2(r t ; r ′t ′) [−D(r − r ′, t − t ′)− D(r + r ′, t − t ′)],

respectively, while the propagator ofχ0 is given by (4.26). Note also, that the
fit (5.16) is analogous to the (euclidean) functional integral counterpart of the
VLS-like operator solution (Lowenstein and Swieca, 1971; Velo, 1967) of theγ 5

analogue (Krasnikovet al., 1979) of the Schwinger model, transformed to the
temporal gauge.

6. DISCUSSION

We want to conclude this whole paper with these four points.

6.1. No Well-Defined Charge Symmetry at the Dyonic Core

Since it has been demonstrated (Mandelstam, 1976, 1979; Rubakov, 1981a;
’t Hooft, 1978) that the helicity-conserving and charge-mixing boundary con-
ditions to be imposed on fermionic fields at monopole core violate the charge
superselection rule. This problem may possibly find a solution by establishing the
formation of chiral condensate, allowing the flipping of helicity and proving an
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understanding of the role of dyon as catalyst in baryon-number–nonconserving pro-
cesses. This problem of chiral condensation, at the dyonic core requires the explicit
field solutions in the interior region of dyon. We have investigated the extended
structure of non-Abelian dyon in Section 2 by constructing suitable Lagrangian
density (2.17) and angular-momentum tensor (2.18) in non-Abelian gauge theory
of dyons. Since an Abelian dyon moving in the generalized field of another dyon
carries a residual angular momentum (field contribution) besides its orbital and
spin angular momenta. Keeping in mind this fact and Julia-zee dyon solutions
(2.24) and (2.25) we have constructed the residual part of the angular momentum
(i.e. field contribution) in the interior as well as exterior regions of dyon (2.39)
and (2.40). We can conclude by Eq. (2.41) that when a fermion scatters from the
core of the dyon and changes its charge, the lost charge must be deposited on the
dyonic core (in order to maintain overall charge conservation) and the core must
neutralize itself by some sort of pair creation process. This pair creation effect
leads to baryon number non conservation in the presence of non-Abelian dyon has
been undertaken in rest of the part of the paper. The dyonic core has remarkable
abilities to absorb baryon and lepton numbers at no loss in the energy.

6.2. Relation to theθ Vacuum Structure

Since the vacuum structure of the gauge theories is most apparent in the
temporal gauge (4.20) (Callenet al., 1976; Jackiw and Rebbi, 1976), it is convenient
to proceed in this gauge. From (5.15) we find that the temporal gauge saddle-point
field at,−

1 can be represented as

at,−
1 (r, t ; r1, t1) = πθ (t − t1)δ(r − r1)− ∂2

r

∫ t

−∞
Re2/4π2(r t ′; r1t1) dt′

− ∂tRe2/4π2(r t ; r1t1) (6.1)

From (A.16) it follows that the last term vanishes ast →∓∞ so the fieldat,−
1

interpolates between the following two configurations:

at,−
1 (r, t = −∞/r1) = 0, (6.2a)

at,−
1 (r, t = ∞/r1) = 0= ∂rÄ(r/r1), (6.2b)

where

Ä(r/r1) = πθ (r − r1)− ∂r

∫ +∞
−∞

Re2/4π2(r, t ′; 0, r1) dt′

The field (6.2b) is a pure gauge (see (4.11)); from (A.15) and (A.16) we find the
following asymptotics of the gauge functionÄ:

Ä(0/r1) = 0 Ä(∞/r1) = π. (6.3)
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Now we recall the fact that the gauge transformation (4.11) in terms of the initial
fields Aµ, ϕ, andψ is just the usual gauge transformation with the gauge function
(4.12). Thus, the saddle-point configuration (i.e., the configuration (3.10) withat,−

substituted fora) interpolates between the fields

Vi (t = ∞) = Va
i ϕ(−∞) = ϕa,

Vi (t = +∞) = gÄVa
i g−1

Ä + gÄ∂ i g
−1
Ä ,

ϕ(t = +∞) = gÄϕ
ag−1
Ä = ϕa,

where

gÄ = exp(i τ anaÄ). (6.4)

From (6.3) we conclude that the gauge function (6.4) has just the same form as
that considered in Callenet al.(1976) Jackiw and Rebbi (1976) and its topological
number is equal to−1. The arguments as those of Callenet al. (1976) Crewether
(1981) Jackiw and Rebbi (1976) show that the vectorU [gÄ] |M, 0〉 (UdgÄe being
the operator of the gauge transformation with the gauge function (6.4)), which is
the gauge transform of the perturbation theory dyon state|M, 0〉, carries one unit
of each flavor. This could also be anticipated, since the operatorU [gÄ] carries
one unit of each flavor, as follows from the considerations of Callenet al. (1976)
Crewether (1981) Jackiw and Rebbi (1976). The gauge-invariant dyon state is a
linear superposition of the form

|M, θ〉 =
+∞∑

n=−∞
einθ (U [gÄ])n|M, 0〉; (6.5)

this is another way to understand the fermion-number breaking in the presence of
a dyon. In fact, the heuristic arguments of Section 3 are simplified in the temporal
gauge; indeed, the unboundedness from below (by any positive number) of the
action (3.12) can be established by the Derric-like (Rubakov, 1981) time rescaling.

6.3. The Unitary Gauge

The particle content of the theory with the action (3.1) is most apparent in
the unitary gauge. In this gauge it makes sense to consider the matrix element
〈εαβ9(1)

+α9
(2)
−β〉dyon (α, β = 1, 2 are Lorentz indices, the fields9(s)

± are defined in
Section 3). Since the operator9 (1)

+ 9
(2)
− carries one unit of each flavor, the nonzero

contributions to this matrix element come from the unitary gauge configurations
with the winding number equal to−1, in particular, from the field (3.23) and (3.16)
(or (3.23)). The latter contribution is proportional to the zero fermion modes in the
external fields (3.23) and (3.16), namely, it is proportional to

εαβ9
u
+α9

u
−β , (6.6)
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where the zero mode9u is just the zero modes (3.18) and (3.22) transformed to
the unitary gauge. Performing this gauge transformation (the corresponding gauge
function is described, e.g., in Arafuneet al.(1975) Englert and Windey (1976) far
from the dyon center, we obtain

9u
+ = B(r, t)

sin
1

2
2e−i8

− cos
1

2
2

 ,

9u
− = B(r, t)

 cos
1

2
2

sin
1

2
2ei8

 ,

(6.7)

where2 and8 are polar angles and

B(r, t) = N√
8π

e−ρ(r,t)

r
.

Note that9u
− is the CP conjugate of9u

+. From (6.6) and (6.7) we conclude that
〈εαβ9 (1)

+α9
(2)
−β〉dyon 6= 0, i.e. the Adler-Bell–Jackiw anomaly gives rise to flavor-

non-conserving and fermion-number–nonconserving transitions with charge
conservation.

6.4. Baryon-Number Breaking in the Presence of Dyon

The dyon (Julia and Zee, 1975) of theSU(5) grand unified theory coincides
asymptotically with the ’t Hooft–Polyakov one for theSU(2) group imbedded into
SU(5) in the following way:

T = 1

2
diag(0, 0,τ, 0). (6.8)

This dyon is fundamental in the sense that it is characterized by minimal electric
and magnetic charge. With respect toSU(2) specified by (6.8), the first-generation
fermions form the following left-handed doublets (in the unitary gauge),(−ū2

u1

)
L

,

(
ū1

u2

)
L

,

(
d3

e+

)
L

,

(
e−

−d̄3

)
L

, (6.9)

other being singlets. In (6.9) the superscripts 1, 2, and 3 are colour indices.
If u andd quarks and electrons were massless, the above arguments would

be directly applicable to this case, so the matrix element

〈u1u2d3e−〉dyon (6.10)

would be nonzero, and coupling-constant- and unification-scale-independent. This
conclusion remains unchanged if other (massive) generations are taken into account
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(Rubakov, 1981b). The matrix element (6.10) corresponds to the process

p+ dyon→ e+ + dyon+ everything, (6.11)

and the arguments of the above paper imply that the cross-section of this paper is
independent of the coupling constant and the unification scale, i.e. it is roughly
O(1GeV−2). Unfortunately, the above discussion is not quite decisive. First, elec-
trons and quarks are massive. Naively, this seems to be inessential at distances
in comparison to the compton wavelengths of electron and light quarks. However
in the massive case the higher order corrections could destroy the boundary con-
ditions (3.21) and (4.18), thus invalidating the above analysis. For example, the
boundary conditions for fermions with extra magnetic moment (Kazamaet al.,
1977; Kazama and Yang, 1977) differ from those given by (3.21). Second, in the
above considerations we completely ignored gluon self-interaction. So, further
investigations are required to establish the existence of processes like (6.11) and
to estimate the cross-section of these processes.

In our forthcoming paper, the study of fermion-number–violating matrix
element〈 f (r1, t1)〉dyon= 〈 f 〉dyon of the operator f (r, t) = χ (1)

1 (r, t)χ (2)
1 (r, t)+

χ
(1)
2 (r, t)χ (2)

2 (r, t) in presence of a dyon and density of the condensate of zero-
angular-momentum fermions (an estimate of corrections), guided by the anal-
ogy with the Schwinger model (Krasnikovet al., 1979; Nielsen and Schroer,
1977a,b) will be undertaken (In this section we further exploit the analogy used in
Sections to discuss the fermion-number breaking in the presence of dyon.), which
concludes that the approximation used is reasonable at least for the evaluation
of Green functions of fermions with zero total angular momentum, including
fermion-number–breaking Green functions.

APPENDIX A: LEGENDRE FUNCTION

In this appendix we summarize some relevent properties of the special
functions.

The Legendre functionQm(x) obeys the following equation. (Abramowitz
and Stegun, 1964; Bateman and Erdelyi, 1953; Gradshtein and Ryzhik, 1961):

(1− x2)
d2Qm

dx2
− 2x

d Qm

dx2
+m(m+ 1)Qm = 0 (A1)

Its explicit expression form= 0 is

Q0(x) = −1

2
log

x − 1

x + 1
. (A2)

It has the following asymptotic behaviour asx→ 1 (Bateman and Erdelyi, 1953)

Qm(x) = −1

2
log

x − 1

2
−9(m+ 1)+9(1)+ O[(x − 1) log(x − 1)]. (A3)
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From the representation (Abramowitz and Stegun, 1964; Bateman and Erdelyi,
1953; Gradshtein and Ryzhik, 1961)

Qm(x) = 2−m−1π1/2 0(m+ 1)

0
(
m+ 3

2

)x−m−1F

(
1+ m

2
,

1+m

2
; m+ 3

2
;

1

x2

)
whereF(α, β; γ ; x) is the hypergeometric function, it follows that

Qm(x) = 2−m−1π1/2 0(m+ 1)

0
(
m+ 3

2

)x−m−1(1+ O(x−2)) (A4)

at largeX. Qm can be also expressed as (Abramowitz and Stegun, 1964; Bateman
and Erdelyi, 1953)

Qm(x) =
(

1

2
π

)1/2

(x2− 1)−1/4 0(m+ 1)

0
(
m+ 3

2

) [x − (x2− 1)1/2
]m+1/2

×F

(
1

2
,

1

2
; m+ 1

2
;−x − (x2− 1)1/2

2(x2− 1)1/2

)
.

Using the Stirling formula,

0(m) = e−m+m logm m−1/2(2π )1/2(1+ O(m−1)),

as well as the definition of the hypergeometric series, we find at largem andx
fixed

Qm(x) =
(

1

2
π

)1/2

m−1/2(x2− 1)−1/4
[
x − (x2− 1)1/2

]m+1/2
(A5)

Now we derive the asymptotic expansion ofQm(x) as m→∞, which is
uniformly valid at 1< x < ∞. We use the method described by Thorne (1957)
and consider the functiony(τ ) defined by

y(τ ) =
(

sinhτ

τ

)1/2

Qm(coshτ ).

From (A1) we obtain the following equation fory(τ ):

d2y

dτ 2
+ 1

τ

dy

dτ
−32y+ w(τ )y = 0, (A6)

where

3−m+ 1

2
w(τ )− 1

4
(sinh−2 τ − τ−2). (A7)

We search for the solution of (A6) in the form of asymptotic series

y(τ ) = K0(3τ )
∞∑

n=0

Tn(τ )

32n
− K1(3τ )

3

∞∑
n=0

Rn(τ )

32n
, (A8)
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whereKm are modified Bessel functions. Inserting (A8) into (A6), we obtain the
following recurrent relations:

Rn(τ ) = −1

2

∫ τ

0

[
T ′′n (τ ′)+ T ′n(τ ′)

τ ′
+ w(τ ′)Tn(τ ′)

]
dτ ′,

Tn+1(τ ) = −1

2

∫ τ

0

⌈
R′′n(τ ′)− R′n(τ ′)

τ ′
+ Rn(τ ′)

(τ ′)2
+ w(τ ′)Rn(τ ′)

⌉
dτ ′ (A9)

By comparing the behaviours ofy(τ ) and K0(3τ ) at smallτ , namely (see (A3)
and (Abramowitz and Stegun, 1964; Gradshtein and Ryzhik, 1961)

yτ = −logτ + O(1),

K0(3τ ) = − logτ + O(1),

we find that

T0 = 1. (A10)

Equations (A9) and (A10) are sufficient to determine the unknown functionsTu

andRu. Note that at smallτ

Rn = O(τ ) n ≥ 0,

Tn = O(τ 2) n > 0,

Thus, the desired expansion is

Qm(coshτ ) =
( τ

sinhτ

)1/2
{

K0

[(
m+ 1

2

)
τ

] ∞∑
n=0

Tn(τ )(
m+ 1

2

)2n

− K1
⌊(

m+ 1
2

)
τ
⌋

m+ 1
2

∞∑
n=0

Rn(τ )(
m− 1

2

)2n

}
(A11)

Note that the asymptotic expansion (A11) is a particular case of Thorne’s (1957)
and is uniformly valid in the region 0< τ < ∞. Performing the change of vari-
ables,τ = z/(m+ 1/2), we find another asymptotic expansion,

Qm

(
cosh

z

m+ 1
2

)
= K0(z)

{
1+ z2(

m+ 1
2

)2 ∞∑
n=0

T̃n(z)(
m+ 1

2

)2n

}

− K1(z)z(
m+ 1

2

)2 ∞∑
n=0

R̃n(z)(
m+ 1

2

)2n . (A12)

where

R̃n = Tn = O(1) z→ 0 (A13)
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APPENDIX B: THE FUNCTION Rk(r t ; r ′t ′)

Rk(r t ; r ′t ′) is defined by (4.31) and (4.32). From (A1) and (A3) it follows
that this function obeys (4.30). From (A3) we find

<κ (r t ; r ′t ′) = 1

4π
log

(r − r ′)2+ (t − t ′)2

4r 2
+ 1

2π
{9[d(κ + 1)]−9(1)}

+O{[(r − r ′)2+ (t − t ′)2] log[(r − r ′)2+ (t − t ′)2]} (A14)

at small (r − r ′)2+ (t − t ′)2. Equation (A4) yields

<κ = α(κ)

[
rr ′

r ′2+ (t − t ′)2

]1/d(κ)

r → 0 (A15)

as well as

<κ = α(κ)

[
(r − r ′)2+ (t − t ′)2

rr ′

]−1−d(κ)

r 2+ t2→∞,

α(κ) = − 1

2
√
π

0(1+ d(κ))

0
(

3
2 + d(κ)

) . (A16)
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